Eladio Domínguez
University of Zaragoza
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eladio Domínguez.
discrete geometry for computer imagery | 2000
R. Ayala; Eladio Domínguez; Angel R. Francés; A. Quintero
The main contribution of this paper is a new extrinsic digital fundamental group that can be readily generalized to define higher homotopy groups for arbitrary digital spaces. We show that the digital fundamental group of a digital object is naturally isomorphic to the fundamental group of its continuous analogue. In addition, we state a digital version of the Seifert-Van Kampen theorem.
international workshop on combinatorial image analysis | 2004
R. Ayala; Eladio Domínguez; Angel R. Francés; A. Quintero
In (Ayala et al. (Discrete Appl. Math. 125 (1) (2003) 3) it was introduced the notion of a digital fundamental group π1d(O/S; σ) for a set of pixels O in relation to another set S which plays the role of an obstacle. This notion intends to be a generalization of the digital fundamental groups of both digital objects and their complements in a digital space. However, the suitability of this group was only checked for digital objects in that paper. As a sequel, we extend here the results in Ayala et al. (2003) for complements of objects. More precisely, we prove that for arbitrary digital spaces the group π1d(O/S; σ) maps onto the usual fundamental group of the difference of continuous analogues |AO ∪ S| - |AS|. Moreover, this epimorphism turns to be an isomorphism for a large class of digital spaces including most of the examples in digital topology.
Electronic Notes in Theoretical Computer Science | 2001
R. Ayala; Eladio Domínguez; Angel R. Francés; A. Quintero
Abstract As a sequel of [4], this paper is devoted to the computation of the digital fundamental group πd1(O/S;σ) defined by loops in the digital object O for which the digital object S acts as an “obstacle”. We prove that for arbitrary digital spaces the group πd1(O/S;σ) maps onto the usual fundamental group of the difference of continuous analogues ∣n A O∪S∣ − ∣n A S∣. Moreover, we show that this epimorphism turns to be an isomorphism for a large class of digital spaces including most of the examples in digital topology.
Publicacions Matematiques | 1988
R. Ayala; Eladio Domínguez; A. Quintero
The purpose of this note is to prove the exponential law for uniformly continuous proper maps.
Novática: Revista de la Asociación de Técnicos de Informática | 2005
Eladio Domínguez; Beatriz Pérez Valle; Aurea Rodríguez Villanueva; Maria Antonio Zapata Abad
Actas del I simposio sobre Julio Rey Pastor : Logroño 28 de octubre-1 de noviembre 1983, 1985, ISBN 84-00-06043-1, págs. 175-184 | 1985
Eladio Domínguez
Archive | 1996
Rafael Ayala Gómez; Antonio Rafael Quintero Toscano; Eladio Domínguez
Novática: Revista de la Asociación de Técnicos de Informática | 2011
Eladio Domínguez; Jose C. Ciria; Inés Escario; Angel R. Francés; María Jesús Lapeña; María Antonia Zapata
Pre-publicaciones del Seminario Matemático " García de Galdeano " | 2002
Jose C. Ciria; Angel R. Francés; Eladio Domínguez
Archive | 2002
Rafael Ayala Gómez; Antonio Rafael Quintero Toscano; Eladio Domínguez