Elaine C. Howell
University of Birmingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elaine C. Howell.
Theoretical and Applied Genetics | 2000
R. L. Sebastian; Elaine C. Howell; Graham J. King; D. F. Marshall; Michael J. Kearsey
Abstract Genetical maps of molecular markers in two very different F1-derived doubled-haploid populations of Brassica oleracea are compared and the first integrated map described. The F1 crosses were: Chinese kale×calabrese (var. alboglabra×var. italica) and cauliflower×Brussels sprout (var. botrytis×var. gemmifera). Integration of the two component maps using Joinmap v.2.0 was based on 105 common loci including RFLPs, AFLPs and microsatellites. This provided an effective method of producing a high-density consensus linkage map of the B. oleracea genome. Based on 547 markers mapping to nine linkage groups, the integrated map covers a total map length of 893 cM, with an average locus interval of 2.6 cM. Comparisons back to the component linkage maps revealed similar sequences of common markers, although significant differences in recombination frequency were observed between some pairs of homologous markers. Map integration resulted in an increased locus density and effective population size, providing a stronger framework for subsequent physical mapping and for precision mapping of QTLs using substitution lines.
Genetics | 2008
Elaine C. Howell; Michael J. Kearsey; G. H. Jones; Graham J. King; Susan J. Armstrong
The two genomes (A and C) of the allopolyploid Brassica napus have been clearly distinguished using genomic in situ hybridization (GISH) despite the fact that the two extant diploids, B. rapa (A, n = 10) and B. oleracea (C, n = 9), representing the progenitor genomes, are closely related. Using DNA from B. oleracea as the probe, with B. rapa DNA and the intergenic spacer of the B. oleracea 45S rDNA as the block, hybridization occurred on 9 of the 19 chromosome pairs along the majority of their length. The pattern of hybridization confirms that the two genomes have remained distinct in B. napus line DH12075, with no significant genome homogenization and no large-scale translocations between the genomes. Fluorescence in situ hybridization (FISH)—with 45S rDNA and a BAC that hybridizes to the pericentromeric heterochromatin of several chromosomes—followed by GISH allowed identification of six chromosomes and also three chromosome groups. Our procedure was used on the B. napus cultivar Westar, which has an interstitial reciprocal translocation. Two translocated segments were detected in pollen mother cells at the pachytene stage of meiosis. Using B. oleracea chromosome-specific BACs as FISH probes followed by GISH, the chromosomes involved were confirmed to be A7 and C6.
Genetics | 2009
Elaine C. Howell; Susan J. Armstrong; Dmitry A. Filatov
A small cluster of dioecious species in the plant genus Silene has evolved chromosomal sex determination and sex chromosomes relatively recently, within the last 10 million years (MY). Five dioecious Silene species (section Elisanthe) are very closely related (1–2 MY of divergence) and it was previously thought that all five have similar sex chromosomes. Here we demonstrate that in one of these species, Silene diclinis, the sex chromosomes have been significantly rearranged, resulting in the formation of neo-sex chromosomes. Fluorescence in situ hybridization with genic and repetitive probes revealed that in S. diclinis a reciprocal translocation has occurred between the ancestral Y chromosome and an autosome, resulting in chromosomes designated Y1 and Y2. Both Y1 and Y2 chromosomes are male specific. Y1 pairs with the X chromosome and with the autosome (the neo-X), which cosegregates with X. Y2 pairs only with the neo-X, forming a chain X-Y1-neo-X-Y2 in male meiosis. Despite very recent formation of the neo-sex chromosomes in S. diclinis, they are present in all surveyed individuals throughout the species range. Evolution of neo-sex chromosomes may be the cause of partial reproductive isolation of this species and could have been the isolating mechanism that drove speciation of S. diclinis.
Theoretical and Applied Genetics | 2008
H. Razi; Elaine C. Howell; H. J. Newbury; Michael J. Kearsey
Previous locations of flowering time (FT) QTL in several Brassica species, coupled with Arabidopsis synteny, suggest that orthologues of the genes FLC, FY or CONSTANS might be the candidates. We focused on FLC, and cloned paralogous copies in Brassica oleracea, obtained their genomic DNA sequences, and confirmed their locations relative to those of known FT-QTL by genetical mapping. They varied in total length mainly due to the variable size of the first and last introns. A high level of identity was observed among BrassicaFLC genes at the amino acid level but non-synonymous differences were present. Comparative analysis of the promoter and intragenic regions of BoFLC paralogues with ArabidopsisFLC revealed extensive differences in overall structure and organisation but showed high conservation within those segments known to be essential in regulating FLC expression. Four B. oleraceaFLC copies (BoFLC1, BoFLC3, BoFLC4 and BoFLC5) were located to their respective linkage groups based on allelic sequence variation in lines from a doubled haploid population. All except BoFLC4 were within the confidence intervals of known FT-QTL. Sequence data indicated that relevant non-synonymous polymorphisms were present between parents A12DHd and GDDH33 for BoFLC genes. However, BoFLC alleles segregated independently of FT in backcrosses while the study provided evidence that BoFLC4 and BoFLC5 contain premature stop codons and so could not contribute to flowering time variation. Therefore, there is strong evidence against any of the 4 BoFLC being FT-QTL candidates in this population.
BMC Plant Biology | 2012
Judith A. Irwin; Clare Lister; Eleni Soumpourou; Yanwen Zhang; Elaine C. Howell; Graham R. Teakle; Caroline Dean
BackgroundPlants adopt different reproductive strategies as an adaptation to growth in a range of climates. In Arabidopsis thaliana FRIGIDA (FRI) confers a vernalization requirement and thus winter annual habit by increasing the expression of the MADS box transcriptional repressor FLOWERING LOCUS C (FLC). Variation at FRI plays a major role in A. thaliana life history strategy, as independent loss-of-function alleles that result in a rapid-cycling habit in different accessions, appear to have evolved many times. The aim of this study was to identify and characterize orthologues of FRI in Brassica oleracea.ResultsWe describe the characterization of FRI from Brassica oleracea and identify the two B. oleracea FRI orthologues (BolC.FRI.a and BolC.FRI.b). These show extensive amino acid conservation in the central and C-terminal regions to FRI from other Brassicaceae, including A. thaliana, but have a diverged N-terminus. The genes map to two of the three regions of B. oleracea chromosomes syntenic to part of A. thaliana chromosome 5 suggesting that one of the FRI copies has been lost since the ancient triplication event that formed the B. oleracea genome. This genomic position is not syntenic with FRI in A. thaliana and comparative analysis revealed a recombination event within the A. thaliana FRI promoter. This relocated A. thaliana FRI to chromosome 4, very close to the nucleolar organizer region, leaving a fragment of FRI in the syntenic location on A. thaliana chromosome 5. Our data show this rearrangement occurred after the divergence from A. lyrata. We explored the allelic variation at BolC.FRI.a within cultivated B. oleracea germplasm and identified two major alleles, which appear equally functional both to each other and A. thaliana FRI, when expressed as fusions in A. thaliana.ConclusionsWe identify the two Brassica oleracea FRI genes, one of which we show through A. thaliana complementation experiments is functional, and show their genomic location is not syntenic with A. thaliana FRI due to an ancient recombination event. This has complicated previous association analyses of FRI with variation in life history strategy in the Brassica genus.
Genetics | 2008
Dmitry A. Filatov; Elaine C. Howell; Constantinos Groutides; Susan J. Armstrong
Transposable elements often accumulate in nonrecombining regions, such as Y chromosomes. Contrary to this trend, a new Silene retrotransposon described here, has spread recently all over the genome of plant Silene latifolia, except its Y chromosome. This coincided with the latest steps of sex chromosome evolution in this species.
Plant Journal | 2018
Kim Osman; Jianhua Yang; Elisabeth Roitinger; Christophe Lambing; Stefan Heckmann; Elaine C. Howell; Maria Cuacos; Richard Imre; Gerhard Dürnberger; Karl Mechtler; Susan J. Armstrong; F. Christopher H. Franklin
Summary During meiosis, the formation of crossovers (COs) generates genetic variation and provides physical links that are essential for accurate chromosome segregation. COs occur in the context of a proteinaceous chromosome axis. The transcriptomes and proteomes of anthers and meiocytes comprise several thousand genes and proteins, but because of the level of complexity relatively few have been functionally characterized. Our understanding of the physical and functional interactions between meiotic proteins is also limited. Here we use affinity proteomics to analyse the proteins that are associated with the meiotic chromosome axis protein, ASY1, in Brassica oleracea anthers and meiocytes. We show that during prophase I ASY1 and its interacting partner, ASY3, are extensively phosphorylated, and we precisely assign phosphorylation sites. We identify 589 proteins that co‐immunoprecipitate with ASY1. These correspond to 492 Arabidopsis orthologues, over 90% of which form a coherent protein–protein interaction (PPI) network containing known and candidate meiotic proteins, including proteins more usually associated with other cellular processes such as DNA replication and proteolysis. Mutant analysis confirms that affinity proteomics is a viable strategy for revealing previously unknown meiotic proteins, and we show how the PPI network can be used to prioritise candidates for analysis. Finally, we identify another axis‐associated protein with a role in meiotic recombination. Data are available via ProteomeXchange with identifier PXD006042.
Chromosoma | 2011
Elaine C. Howell; Susan J. Armstrong; Dmitry A. Filatov
Dioecious Silene latifolia evolved heteromorphic sex chromosomes within the last ten million years, making it a species of choice for studies of the early stages of sex chromosome evolution in plants. About a dozen genes have been isolated from its sex chromosomes and basic genetic and deletion maps exist for the X and Y chromosomes. However, discrepancies between Y chromosome maps led to the proposal that individual Y chromosomes may differ in gene order. Here, we use an alternative approach, with fluorescence in situ hybridization (FISH), to locate individual genes on S. latifolia sex chromosomes. We demonstrate that gene order on the Y chromosome differs between plants from two populations. We suggest that dynamic gene order may be a general property of Y chromosomes in species with XY systems, in view of recent work demonstrating that the gene order on the Y chromosomes of humans and chimpanzees are dramatically different.
Methods of Molecular Biology | 2013
Elaine C. Howell; Susan J. Armstrong
We have developed a sequential procedure with fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) that enables us to distinguish between the A and C genomes in Brassica napus and to identify certain individual chromosomes or chromosome groups within a genome. Our modified GISH technique uses a repetitive sequence in addition to the whole genome in the blocking DNA, and it is effective on meiotic and mitotic cells present in the anther material that we use.
G3: Genes, Genomes, Genetics | 2018
Erin E. Higgins; Wayne E. Clarke; Elaine C. Howell; Susan J. Armstrong; Isobel A. P. Parkin
The heavy selection pressure due to intensive breeding of Brassica napus has created a narrow gene pool, limiting the ability to produce improved varieties through crosses between B. napus cultivars. One mechanism that has contributed to the adaptation of important agronomic traits in the allotetraploid B. napus has been chromosomal rearrangements resulting from homoeologous recombination between the constituent A and C diploid genomes. Determining the rate and distribution of such events in natural B. napus will assist efforts to understand and potentially manipulate this phenomenon. The Brassica high-density 60K SNP array, which provides genome-wide coverage for assessment of recombination events, was used to assay 254 individuals derived from 11 diverse cultivated spring type B. napus. These analyses identified reciprocal allele gain and loss between the A and C genomes and allowed visualization of de novo homoeologous recombination events across the B. napus genome. The events ranged from loss/gain of 0.09 Mb to entire chromosomes, with almost 5% aneuploidy observed across all gametes. There was a bias toward sub-telomeric exchanges leading to genome homogenization at chromosome termini. The A genome replaced the C genome in 66% of events, and also featured more dominantly in gain of whole chromosomes. These analyses indicate de novo homoeologous recombination is a continuous source of variation in established Brassica napus and the rate of observed events appears to vary with genetic background. The Brassica 60K SNP array will be a useful tool in further study and manipulation of this phenomenon.