Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elaine E. Wirrig is active.

Publication


Featured researches published by Elaine E. Wirrig.


Circulation Research | 2007

Isl1 Expression at the Venous Pole Identifies a Novel Role for the Second Heart Field in Cardiac Development

Brian S. Snarr; Jessica L. O’Neal; Mastan R. Chintalapudi; Elaine E. Wirrig; Aimee L. Phelps; Steven W. Kubalak; Andy Wessels

The right ventricle and outflow tract of the developing heart are derived from mesodermal progenitor cells from the second heart field (SHF). SHF cells have been characterized by expression of the transcription factor Islet-1 (Isl1). Although Isl1 expression has also been reported in the venous pole, the specific contribution of the SHF to this part of the heart is unknown. Here we show that Isl1 is strongly expressed in the dorsal mesenchymal protrusion (DMP), a non–endocardially-derived mesenchymal structure involved in atrioventricular septation. We further demonstrate that abnormal development of the SHF-derived DMP is associated with the pathogenesis of atrioventricular septal defects. These results identify a novel role for the SHF.


Developmental Dynamics | 2007

A spatiotemporal evaluation of the contribution of the dorsal mesenchymal protrusion to cardiac development

Brian S. Snarr; Elaine E. Wirrig; Aimee L. Phelps; Thomas C. Trusk; Andy Wessels

The mesenchymal tissues involved in cardiac septation are derived from different sources. In addition to endocardial‐derived mesenchyme, the heart also receives contributions from the neural crest, the proepicardium, and the dorsal mesenchymal protrusion (DMP). Whereas the contributions of the neural crest and proepicardium have been thoroughly studied, the DMP has received little attention. Here, we present the results of a comprehensive spatiotemporal study of the DMP in cardiac development. Using the Tie2‐Cre mouse, immunohistochemistry, and AMIRA reconstructions, we show that the DMP, in combination with the mesenchymal cap on the primary atrial septum, fuse with the major atrioventricular cushions to close the primary atrial foramen and to form the atrioventricular mesenchymal complex. In this complex, the DMP constitutes a discrete prominent mesenchymal component, wedged in between the major cushions. This new model for atrioventricular septation may provide novel insights into understanding the etiology of congenital cardiac malformations. Developmental Dynamics 236:1287–1294, 2007.


Birth Defects Research Part A-clinical and Molecular Teratology | 2011

Extracellular Matrix and Heart Development

Marie M. Lockhart; Elaine E. Wirrig; Aimee L. Phelps; Andy Wessels

The extracellular matrix (ECM) of the developing heart contains numerous molecules that form a dynamic environment that plays an active and crucial role in the regulation of cellular events. ECM molecules found in the heart include hyaluronan, fibronectin, fibrillin, proteoglycans, and collagens. Tight regulation of the spatiotemporal expression, and the proteolytic processing of ECM components by proteases including members of the ADAMTS family, is essential for normal cardiac development. Perturbation of the expression of genes involved in matrix composition and remodeling can interfere with a myriad of events involved in the formation of the four-chambered heart and result in prenatal lethality or cardiac malformations as seen in humans with congenital heart disease. In this review, we summarize what is known about the specific importance of some of the components of the ECM in relation to the cardiovascular development.


Journal of Molecular and Cellular Cardiology | 2011

Differential expression of cartilage and bone-related proteins in pediatric and adult diseased aortic valves

Elaine E. Wirrig; Robert B. Hinton; Katherine E. Yutzey

Approximately 5 million people are affected with aortic valve disease (AoVD) in the United States. The most common treatment is aortic valve (AoV) replacement surgery, however, replacement valves are susceptible to failure, necessitating additional surgeries. The molecular mechanisms underlying disease progression and late AoV calcification are not well understood. Recent studies suggest that genes involved in bone and cartilage development play an active role in osteogenic-like calcification in human calcific AoVD (CAVD). In an effort to define the molecular pathways involved in AoVD progression and calcification, expression of markers of valve mesenchymal progenitors, chondrogenic precursors, and osteogenic differentiation was compared in pediatric non-calcified and adult calcified AoV specimens. Valvular interstitial cell (VIC) activation, extracellular matrix (ECM) disorganization, and markers of valve mesenchymal and skeletal chondrogenic progenitor cells were observed in both pediatric and adult AoVD. However, activated BMP signaling, increased expression of cartilage and bone-type collagens, and increased expression of the osteogenic marker Runx2 are observed in adult diseased AoVs. They are not observed in the majority of pediatric diseased valves, representing a marked distinction in the molecular profile between pediatric and adult diseased AoVs. The combined evidence suggests that an actively regulated osteochondrogenic disease process underlies the pathological changes affecting AoVD progression, ultimately resulting in stenotic AoVD. Both pediatric and adult diseased AoVs express protein markers of valve mesenchymal and chondrogenic progenitor cells while adult diseased AoVs also express proteins involved in osteogenic calcification. These findings provide specific molecular indicators of AoVD progression, which may lead to identification of early disease markers and the development of potential therapeutics.


Developmental Biology | 2010

Twist1 promotes heart valve cell proliferation and extracellular matrix gene expression during development in vivo and is expressed in human diseased aortic valves.

Santanu Chakraborty; Elaine E. Wirrig; Robert B. Hinton; Walter H. Merrill; Douglas B. Spicer; Katherine E. Yutzey

During embryogenesis the heart valves develop from undifferentiated mesenchymal endocardial cushions (EC), and activated interstitial cells of adult diseased valves share characteristics of embryonic valve progenitors. Twist1, a class II basic-helix-loop-helix (bHLH) transcription factor, is expressed during early EC development and is down-regulated later during valve remodeling. The requirements for Twist1 down-regulation in the remodeling valves and the consequences of prolonged Twist1 activity were examined in transgenic mice with persistent expression of Twist1 in developing and mature valves. Persistent Twist1 expression in the remodeling valves leads to increased valve cell proliferation, increased expression of Tbx20, and increased extracellular matrix (ECM) gene expression, characteristic of early valve progenitors. Among the ECM genes predominant in the EC, Col2a1 was identified as a direct transcriptional target of Twist1. Increased Twist1 expression also leads to dysregulation of fibrillar collagen and periostin expression, as well as enlarged hypercellular valve leaflets prior to birth. In human diseased aortic valves, increased Twist1 expression and cell proliferation are observed adjacent to nodules of calcification. Overall, these data implicate Twist1 as a critical regulator of valve development and suggest that Twist1 influences ECM production and cell proliferation during disease.


Journal of Molecular and Cellular Cardiology | 2012

Differential activation of valvulogenic, chondrogenic, and osteogenic pathways in mouse models of myxomatous and calcific aortic valve disease

Jonathan D. Cheek; Elaine E. Wirrig; Christina M. Alfieri; Jeanne James; Katherine E. Yutzey

Studies of human diseased aortic valves have demonstrated increased expression of genetic markers of valve progenitors and osteogenic differentiation associated with pathogenesis. Three potential mouse models of valve disease were examined for cellular pathology, morphology, and induction of valvulogenic, chondrogenic, and osteogenic markers. Osteogenesis imperfecta murine (Oim) mice, with a mutation in Col1a2, have distal leaflet thickening and increased proteoglycan composition characteristic of myxomatous valve disease. Periostin null mice also exhibit dysregulation of the ECM with thickening in the aortic midvalve region, but do not have an overall increase in valve leaflet surface area. Klotho null mice are a model for premature aging and exhibit calcific nodules in the aortic valve hinge-region, but do not exhibit leaflet thickening, ECM disorganization, or inflammation. Oim/oim mice have increased expression of valve progenitor markers Twist1, Col2a1, Mmp13, Sox9 and Hapln1, in addition to increased Col10a1 and Asporin expression, consistent with increased proteoglycan composition. Periostin null aortic valves exhibit relatively normal gene expression with slightly increased expression of Mmp13 and Hapln1. In contrast, Klotho null aortic valves have increased expression of Runx2, consistent with the calcified phenotype, in addition to increased expression of Sox9, Col10a1, and osteopontin. Together these studies demonstrate that oim/oim mice exhibit histological and molecular characteristics of myxomatous valve disease and Klotho null mice are a new model for calcific aortic valve disease.


Cardiovascular Pathology | 2011

Transcriptional regulation of heart valve development and disease

Elaine E. Wirrig; Katherine E. Yutzey

Aortic valve disease is estimated to affect 2% of the United States population. There is increasing evidence that aortic valve disease has a basis in development, as congenital valve malformations are prevalent in patients undergoing valve replacement surgery. In fact, a number of genetic mutations have been linked to valve malformations and disease. In the initial stages of aortic valve pathogenesis, the valvular interstitial cells become activated, undergo cell proliferation, and participate in extracellular matrix remodeling. Many of these cell properties are shared with mesenchymal progenitor cells of the normally developing valves and bones. Historically, valve calcification was thought to be a passive process reflecting end-stage disease. However, recent evidence describes the increased expression of transcription factors in diseased AoV that are common to valvulogenic and osteogenic processes. These studies lend support to the idea that a developmental gene program is reactivated in aortic valve disease and may contribute to the molecular mechanisms underlying valve calcification in disease.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Conserved Transcriptional Regulatory Mechanisms in Aortic Valve Development and Disease

Elaine E. Wirrig; Katherine E. Yutzey

There is increasing evidence for activation of developmental transcriptional regulatory pathways in heart valve disease. Here, we review molecular regulatory mechanisms involved in heart valve progenitor development, leaflet morphogenesis, and extracellular matrix organization that also are active in diseased aortic valves. These include regulators of endothelial-to-mesenchymal transitions, such as the Notch pathway effector RBPJ, and the valve progenitor markers Twist1, Msx1/2, and Sox9. Little is known of the potential reparative or pathological functions of these developmental mechanisms in adult aortic valves, but it is tempting to speculate that valve progenitor cells could contribute to repair in the context of disease. Likewise, loss of either RBPJ or Sox9 leads to aortic valve calcification in mice, supporting a potential therapeutic role in prevention of disease. During aortic valve calcification, transcriptional regulators of osteogenic development are activated in addition to valve progenitor regulatory programs. Specifically, the transcription factor Runx2 and its downstream target genes are induced in calcified valves. Runx2 and osteogenic genes also are induced with vascular calcification, but activation of valve progenitor markers and the cellular context of expression are likely to be different for valve and vascular calcification. Additional research is necessary to determine whether developmental mechanisms contribute to valve repair or whether these pathways can be harnessed for new treatments of heart valve disease.


Anatomy and Embryology | 2005

Detection of βig-H3, a TGFβ induced gene, during cardiac development and its complementary pattern with periostin

Russell A. Norris; Christine B. Kern; Andy Wessels; Elaine E. Wirrig; Roger R. Markwald; Corey H. Mjaatvedt

Regulation of normal cardiac development involves numerous transcription factors, cytoskeletal proteins, signaling molecules, and extracellular matrix proteins. These key molecular components act in concert to induce morphological changes essential for the proper development of a functional four-chambered heart. Growth factors such as BMPs and TGFβ’s play a role in migration, proliferation and differentiation during cardiac development and are important regulators of the extracellular matrix (ECM). Genes responsive to these morphogens are likely to play an equally significant role during cardiac development. Therefore, we sought to clone the chicken TGFβ induced gene βig-H3 and evaluate its spatio-temporal expression during heart morphogenesis. Our studies show by Northern analysis, whole mount and section in situ hybridization experiments that βig-H3 is expressed primarily in the mesenchyme of the atrioventricular and outflow tract cushions and later in the right and left atrioventricular valve leaflets and supporting valve structures. The mRNA expression domains of βig-H3 show a complementary pattern compared to that of its highly homologous relative, periostin.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2015

COX2 Inhibition Reduces Aortic Valve Calcification In Vivo

Elaine E. Wirrig; M. Victoria Gomez; Robert B. Hinton; Katherine E. Yutzey

Objective— Calcific aortic valve disease (CAVD) is a significant cause of morbidity and mortality, which affects ≈1% of the US population and is characterized by calcific nodule formation and stenosis of the valve. Klotho-deficient mice were used to study the molecular mechanisms of CAVD as they develop robust aortic valve (AoV) calcification. Through microarray analysis of AoV tissues from klotho-deficient and wild-type mice, increased expression of the gene encoding cyclooxygenase 2 (COX2; Ptgs2) was found. COX2 activity contributes to bone differentiation and homeostasis, thus the contribution of COX2 activity to AoV calcification was assessed. Approach and Results— In klotho-deficient mice, COX2 expression is increased throughout regions of valve calcification and is induced in the valvular interstitial cells before calcification formation. Similarly, COX2 expression is increased in human diseased AoVs. Treatment of cultured porcine aortic valvular interstitial cells with osteogenic media induces bone marker gene expression and calcification in vitro, which is blocked by inhibition of COX2 activity. In vivo, genetic loss of function of COX2 cyclooxygenase activity partially rescues AoV calcification in klotho-deficient mice. Moreover, pharmacological inhibition of COX2 activity in klotho-deficient mice via celecoxib-containing diet reduces AoV calcification and blocks osteogenic gene expression. Conclusions— COX2 expression is upregulated in CAVD, and its activity contributes to osteogenic gene induction and valve calcification in vitro and in vivo.

Collaboration


Dive into the Elaine E. Wirrig's collaboration.

Top Co-Authors

Avatar

Katherine E. Yutzey

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Andy Wessels

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Aimee L. Phelps

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Brian S. Snarr

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Robert B. Hinton

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Stanley Hoffman

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Barbara Riley

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Christine B. Kern

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Corey H. Mjaatvedt

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Iris Moralez

Medical University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge