Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elaine Irving is active.

Publication


Featured researches published by Elaine Irving.


Journal of Cerebral Blood Flow and Metabolism | 2002

Role of Mitogen- and Stress-Activated Kinases in Ischemic Injury

Elaine Irving; Mark J. Bamford

Protein kinase-mediated signaling cascades constitute the major route by which cells respond to their extracellular environment. Of these, three well-characterized mitogen-activated protein kinase (MAPK) signaling pathways are those that use the extracellular signal-regulated kinase (ERK1/2) or the stress-activated protein kinase (p38/SAPK2 or JNK/SAPK) pathways. Mitogenic stimulation of the MAPK-ERK1/2 pathway modulates the activity of many transcription factors, leading to biological responses such as proliferation and differentiation. In contrast, the p38/SAPK2 and JNK/SAPK (c-Jun amino-terminal kinase/stress-activated protein kinase) pathways are only weakly, if at all, activated by mitogens, but are strongly activated by stress stimuli. There is now a growing body of evidence showing that these kinase signaling pathways become activated following a variety of injury stimuli including focal cerebral ischemia. Whether their activation, however, is merely an epiphenomenon of the process of cell death, or is actually involved in the mechanisms underlying ischemia-induced degeneration, remains to be fully understood. This review provides an overview of the current understanding of kinase pathway activation following cerebral ischemia and discusses the evidence supporting a role for these kinases in the mechanisms underlying ischemia-induced cell death.


Journal of Alzheimer's Disease | 2011

Disease Tracking Markers for Alzheimer's Disease at the Prodromal (MCI) Stage

Valeria Drago; Claudio Babiloni; David Bartrés-Faz; Anna Caroli; Beatriz Bosch; Tilman Hensch; Mira Didic; Hans-Wolfgang Klafki; Michela Pievani; Jorge Jovicich; Luca Venturi; Philipp Spitzer; Fabrizio Vecchio; Peter Schoenknecht; Jans Wiltfang; Alberto Redolfi; Gianluigi Forloni; Olivier Blin; Elaine Irving; Ceri Davis; Hans-Goran Hardemark; Giovanni B. Frisoni

Older persons with Mild Cognitive Impairment (MCI) feature neurobiological Alzheimers Disease (AD) in 50% to 70% of the cases and develop dementia within the next 5 to 7 years. Current evidence suggests that biochemical, neuroimaging, electrophysiological, and neuropsychological markers can track the disease over time since the MCI stage (also called prodromal AD). The amount of evidence supporting their validity is of variable strength. We have reviewed the current literature and categorized evidence of validity into three classes: Class A, availability of multiple serial studies; Class B a single serial study or multiple cross sectional studies of patients with increasing disease severity from MCI to probable AD; and class C, multiple cross sectional studies of patients in the dementia stage, not including the MCI stage. Several Class A studies suggest that episodic memory and semantic fluency are the most reliable neuropsychological markers of progression. Hippocampal atrophy, ventricular volume and whole brain atrophy are structural MRI markers with class A evidence. Resting-state fMRI and connectivity, and diffusion MR markers in the medial temporal white matter (parahippocampus and posterior cingulum) and hippocampus are promising but require further validation. Change in amyloid load in MCI patients warrant further investigations, e.g. over longer period of time, to assess its value as marker of disease progression. Several spectral markers of resting state EEG rhythms that might reflect neurodegenerative processes in the prodromal stage of AD (EEG power density, functional coupling, spectral coherence, and synchronization) suffer from lack of appropriately designed studies. Although serial studies on late event-related potentials (ERPs) in healthy elders or MCI patients are inconclusive, others tracking disease progression and effects of cholinesterase inhibiting drugs in AD, and cross-sectional including MCI or predicting development of AD offer preliminary evidence of validity as a marker of disease progression from the MCI stage. CSF Markers, such as Aβ 1-42, t-tau and p-tau are valuable markers which support the clinical diagnosis of Alzheimers disease. However, these markers are not sensitive to disease progression and cannot be used to monitor the severity of Alzheimers disease. For Isoprostane F2 some evidence exists that its increase correlates with the progression and the severity of AD.


Neurobiology of Aging | 2011

Protection against Aβ-mediated rapid disruption of synaptic plasticity and memory by memantine

Igor Klyubin; Qinwen Wang; Miranda N. Reed; Elaine Irving; Neil Upton; J. Hofmeister; J. Cleary; Roger Anwyl; Michael J. Rowan

Soluble amyloid-β protein (Aβ) may cause cognitive impairment in Alzheimers disease in the absence of significant neurodegeneration. Here, the ability of the NMDA receptor (NMDAR) antagonist memantine to prevent synthetic Aβ-mediated rapid functional deficits in learned behavior and synaptic plasticity was assessed in the rat. In vitro, pretreatment with a clinically relevant, NMDAR blocking concentration of memantine partially inhibited the induction of long-term potentiation (LTP) in the dentate gyrus and prevented further inhibition caused by exposure to Aβ(1-42). Whereas systemic injection with memantine alone inhibited LTP in the CA1 area in vivo, a subthreshold dose partially abrogated the inhibition of LTP by intracerebroventricular soluble Aβ(1-42). Similarly, systemic treatment with memantine alone impaired performance of an operant learning task and a subthreshold dose prevented the Aβ(1-42)-mediated increase in perseveration errors. The acute protection afforded by memantine, albeit in a narrow dose range, against the rapid disruptive effects of soluble Aβ(1-42) on synaptic plasticity and learned behavior strongly implicate NMDAR-dependent reversible dysfunction of synaptic mechanisms in Aβ-mediated cognitive impairment.


Neurobiology of Aging | 2010

Enrichment through biomarkers in clinical trials of Alzheimer's drugs in patients with mild cognitive impairment.

Marco Lorenzi; Michael Donohue; Donata Paternicò; Cristina Scarpazza; Susanne Ostrowitzki; Olivier Blin; Elaine Irving; Giovanni B. Frisoni

Clinical trials of disease modifying drugs for Alzheimers disease (AD) in patients with mild cognitive impairment (MCI) might benefit from enrichment with true AD cases. Four hundred five MCI patients (143 converters and 262 nonconverters to AD within 2 years) of the Alzheimers disease Neuroimaging Initiative (ADNI) were used. Markers for enrichment were hippocampal atrophy on magnetic resonance (MRI), temporoparietal hypometabolism on FDG PET, cerebrospinal fluid (CSF) biomarkers (Abeta42, tau, and phospho-tau), and cortical amyloid deposition (11C-PIB positron emission tomography (PET)). Two separate enrichment strategies were tested to A) maximize the proportion of MCI converters screened in, and B) minimize the proportion of MCI converters screened out. Based on strategy A, when compared with no enrichment and ADAS-Cog as an outcome measure (sample size of 834), enrichment with 18F-FDG PET and hippocampal volume lowered samples size to 260 and 277 cases per arm, but at the cost of screening out 1,597 and 434 cases per arm. When compared with no enrichment and clinical dementia rating (CDR-SOB) as an outcome measure (sample size of 674), enrichment with hippocampal volume and Abeta42 lowered sample sizes to 191 and 291 cases per arm, with 639 and 157 screened out cases. Strategy B reduced the number of screened out cases (740 for [11C]-PIB PET, 101 hippocampal volume, 82 ADAS-COG and 330 for [18F]-FDG PET) but at the expense of decreased power and a relative increase size (740 for [11C]-PIB PET, 676 for hippocampal volume, 744 for ADAS-Cog, and 517 for [18F]-FDG PET). Enrichment comes at the price of an often relevant proportion of screened out cases, and in clinical trial settings, the balance between enrichment of screened in and loss of screened out patients should be critically discussed.


Journal of Cerebral Blood Flow and Metabolism | 2005

Identification of Neuroprotective Properties of Anti-MAG Antibody: A Novel Approach for the Treatment of Stroke?

Elaine Irving; Mary Vinson; Claudia Rosin; Jenny C. Roberts; Debra M Chapman; Laura Facci; David Virley; Stephen D. Skaper; Stephen A. Burbidge; Frank S. Walsh; A. Jacqueline Hunter; Andrew A. Parsons

The inhibitory activity of myelin-associated glycoprotein (MAG) on neurons is thought to contribute to the lack of regenerative capacity of the CNS after injury. The interaction of MAG and its neuronal receptors mediates bidirectional signaling between neurons and oligodendrocytes. The novel finding that an anti-MAG monoclonal antibody not only possesses the ability to neutralise the inhibitory effect of MAG on neurons but also directly protects oligodendrocytes from glutamate-mediated oxidative stress-induced cell death is reported here. Furthermore, administration of anti-MAG antibody (centrally and systemically) starting 1 hour after middle cerebral artery occlusion in the rat significantly reduced lesion volume at 7 days. This neuroprotection was associated with a robust improvement in motor function compared with animals receiving control IgG1. Together, these data highlight the potential for the use of anti-MAG antibodies as therapeutic agents for the treatment of stroke.


Neuroscience Letters | 2002

Increased cortical expression of the orexin-1 receptor following permanent middle cerebral artery occlusion in the rat

Elaine Irving; David C. Harrison; A.J. Babbs; A.C. Mayes; Colin A. Campbell; A.J. Hunter; Neil Upton; Andrew A. Parsons

The orexins (hypocretins) have recently been implicated in neurodegeneration associated with narcolepsy. Therefore, the current study was designed to investigate changes in the expression of prepro-orexin and the orexin receptors, OX1R and OX2R following permanent middle cerebral artery occlusion (MCAO) in the rat. Six and twenty-four hours following MCAO, increased OX1R mRNA and protein expression (as assessed by Western blotting and immunohistochemistry) was detected in the ischaemic cortex compared with control tissue. In contrast, however, no increase in OX2R mRNA was detected at any time-point and prepro-orexin levels in the cortex were below assay detection levels. This study shows that orexin receptor localization is altered following cerebral ischaemia. The development of selective orexin receptor antagonists will be crucial in establishing a role for this family of novel peptides in the mechanisms underlying ischaemic cell death.


Neurobiology of Aging | 2012

Rosiglitazone enhances learning, place cell activity, and synaptic plasticity in middle-aged rats

Boon Wan Wang; Vincent Hok; Andrea Della-Chiesa; Charlotte K. Callaghan; Sally Barlow; Marian Tsanov; Ranya G. Bechara; Elaine Irving; David Virley; Neil Upton; Shane M. O'Mara

As an antidiabetic agent, rosiglitazone (ROSI) binds and activates peroxisome proliferator-activator receptor gamma (PPARγ), altering the expression of genes involved in glucose uptake and disposal, ultimately affecting glucose regulation. ROSI might therefore be a potential treatment to ameliorate age-related decline in cognitive function, particularly on an insulin-resistant background, where improvements in peripheral insulin sensitivity and central nervous system (CNS) glucose utilization may facilitate recovery of cognitive function. We therefore examined the amelioration potential of ROSI for neurocognitive deficits resulting from aging in an animal model. Behaviorally, acute and chronic ROSI treatments enhanced acquisition of learning in the water plus maze, a modified version of the Morris water maze task. In parallel, restoration of synaptic plasticity in the dentate gyrus of ROSI-treated middle-aged rats was evident after a single dose intake. Additionally, the spatial receptive fields of hippocampal CA1 place cells were significantly improved by chronic ROSI administration. ROSI treatment reversed basal plasma insulin abnormalities and increased hippocampal glucose transporter (GLUT)-3 expression in middle-aged rats. Taken together, these results suggest that ROSI modulates hippocampal circuitry effectively to promote an improvement in cognitive function, possibly via a glucose transporter-3 mechanism.


Bioorganic & Medicinal Chemistry Letters | 2008

The identification of potent, selective and CNS penetrant furan-based inhibitors of B-Raf kinase

Andrew K. Takle; Mark J. Bamford; Susannah Davies; Robert P. Davis; David Kenneth Dean; Alessandra Gaiba; Elaine Irving; Frank D. King; Antoinette Naylor; Christopher A. Parr; Alison M. Ray; Alastair D. Reith; Beverley Smith; Penelope C. Staton; Jon Graham Anthony Steadman; Tania O. Stean; David M. Wilson

Modification of the potent imidazole-based B-Raf inhibitor SB-590885 resulted in the identification of a series of furan-based derivatives with enhanced CNS penetration. One such compound, SB-699393 (17), was examined in vivo to challenge the hypothesis that selective B-Raf inhibitors may be of value in the treatment of stroke.


Neuroscience Letters | 2000

Decreased nuclear factor-κB DNA binding activity following permanent focal cerebral ischaemia in the rat

Elaine Irving; S.J Hadingham; J Roberts; M Gibbons; M Chabot-Fletcher; A Roshak; Andrew A. Parsons

Many factors implicated in the pathogenesis of cerebral ischaemia such as glutamate, tumour necrosis factor and interleukin-1 have also been shown to activate nuclear factor-kappaB (NF-kappaB). In the present study we have investigated NF-kappaB activity at various times following permanent focal cerebral ischaemia in rats using immunohistochemistry, western blotting and electrophoretic mobility shift assay (EMSA). Three hours following middle cerebral artery occlusion nuclear translocation of NF-kappaB was detected using immunohistochemical and western blotting techniques. This was reflected in a trend towards increased NF-kappaB binding activity (EMSA) in the ischaemic cortex compared to histologically normal tissue. In contrast however, from 6 to 48 h post-occlusion nuclear translocation and NF-kappaB binding activity was decreased in the ischaemic cortex. Decreased NF-kappaB binding activity detected in degenerating neurones, suggests that decreased NF-kappaB activity may exacerbate ischaemia induced neuronal cell death.


Journal of Neuroscience Methods | 2002

Programmable microchip monitoring of post-stroke pyrexia: effects of aspirin and paracetamol on temperature and infarct size in the rat

Jeffrey J. Legos; Arduino A Mangoni; Colin A. Campbell; Elaine Irving; Jenny C. Roberts; Frank C. Barone; Andrew A. Parsons

BACKGROUND Recent studies have demonstrated spontaneous and prolonged hyperthermia following stroke in both humans and rodents. However, a full characterization of these pyretic changes and the effects of anti-pyretic drugs on outcome is not available. METHODS The aims of this study were to monitor conscious body temperature (n=10 per group) using programmable microchips for up to 24 h in rats following either permanent (p) or 90 min transient (t) middle cerebral artery occlusion (MCAO) or sham surgery, and to evaluate the relationship to hypothalamic damage. Also, the effects of anti-pyretic drug therapy on body temperature and infarct volume were evaluated in animals treated with vehicle, optimal doses of either aspirin or paracetamol (250 mg/kg i.p.) following pMCAO (n=10 per group). RESULTS At 1 h, body temperature significantly (P<0.01) increased to 38.6+/-0.2 degrees C following tMCAO and 38.9+/-0.1 degrees C following pMCAO compared with sham-operated animals (37.1+/-0.1 degrees C). Sustained hyperthermia (> or =38.1 degrees C) was observed for up to 24 h following pMCAO but approached baseline within 30 min (37.6+/-0.2 degrees C) following tMCAO with reperfusion. The post-stroke pyrexia was related to the degree of ischemia where hypothalamic damage was observed in (80%) of the animals undergoing pMCAO and (0%) in the tMCAO group (P<0.05). Treatment with paracetamol (250 mg/kg i.p.) significantly attenuated (P<0.05) but did not normalize core body temperature up to 2 h (38.2+/-0.4 degrees C) compared with vehicle treated animals (39.3+/-0.1 degrees C). Aspirin had no effect on temperature under these conditions. Hypothalamic damage and lesion volume were not different between animals treated with paracetamol (253.3+/-8.5 mm(3)), aspirin (264.0+/-11.6 mm(3)) or vehicle (274.4+/-8.2 mm(3)). CONCLUSIONS This study is the first to demonstrate the utility of programmable microchips to monitor serial changes in post-stroke hyperthermia. The sustained post-stroke pyrexia and negative effects of antipyretic treatment may be attributed to the extensive hypothalamic injury suggesting that better pharmacologic approaches to reduce body temperature should be identified and evaluated for brain protection in severe experimental stroke.

Collaboration


Dive into the Elaine Irving's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge