Elaine Lai-Han Leung
Macau University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elaine Lai-Han Leung.
Antioxidants & Redox Signaling | 2016
Elaine Lai-Han Leung; Maria Pik Wong; Zhi-Hong Jiang; Zhongqiu Liu; Xiao-Jun Yao; Linlin Lu; Yan-Ling Zhou; Li-Fong Yau; Vicky Pui-Chi Tin; Liang Liu
Abstract Aims: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have been developed to treat non-small cell lung cancer (NSCLC) patients with EGFR mutation, but TKI resistance is common. Almost half of the acquired resistance patients are due to additional T790M mutation on EGFR (EGFRT790M), thus overcoming TKI resistance is important. In this study, we aim to investigate the role of reactive oxygen species (ROS) in TKI resistance as well as the molecular and biological effects of EGFRT790M after redox manipulation. Results: The basal ROS levels in EGFRT790M-containing TKI-resistant NSCLC cell lines were substantially high. Sixty-three human lung tumors showed higher NADPH oxidase isoform 2 (NOX2) expression than normal lung tissues, which may contribute to high basal ROS in cancer and poor survival. Interestingly, only NOX3 was upregulated by sanguinarine, a pharmacological agent to elevate ROS, and resulted in EGFR overoxidation, degradation, and apoptosis. By contrast, such responses were lacking in EGFRWT cells. Selective EGFRT790M degradation was manipulated by redox imbalance between NOX3 and methionine reductase A (MsrA). Furthermore, the in vivo tumor suppression effect of sanguinarine, NOX3 upregulation, and EGFR degradation were confirmed. Innovation: We have found a new treatment strategy to overcome TKI resistance by selectively inducing EGFRT790M degradation via specific stimulation of methionine 790 (M790) oxidation. It can be achieved via manipulating redox imbalance between NOX3 and MsrA. Conclusion: Targeting EGFR by elevating ROS and redox imbalance is a potential new strategy to develop a new EGFR inhibitor for TKI-resistant patients with a wide therapeutic window between EGFRT790M and EGFRWT. Antioxid. Redox Signal. 24, 263–279.
Molecules | 2014
Na Li; Jian-Lin Wu; Yan-Ling Zhou; Jian-Xing He; Liang Liu; Elaine Lai-Han Leung
Celastrol, a triterpene extracted from the Chinese herb Tripterygium wilfordii, has been shown to have multiple bioactivities. Although among these activities, its anti-cancer effects have attracted the most attention, the effect of celastrol on gefitinib-resistant non-small cell lung cancer (NSCLC) cells is not clearly known. Here, we examined the potency of celastrol in three different NSCLC cell lines. We explored its treatment mechanism in two gefitinib-resistant NSCLC cell lines (H1650 and H1975). Our data demonstrated that celastrol exerted its apoptotic effect in a dose- and time-dependent manner. Also, the mitochondria membrane potential was gradually lost and the ratio of Bax/Bcl-2 increased after the treatment of celastrol, both of which are indicators of mitochondria membrane integrity. Although the caspases were activated, the treatment with pan-caspase inhibitor could partially inhibit the level of apoptosis. Moreover, the protein level of Hsp90 client proteins, EGFR and AKT, was measured. Interestingly, both client proteins were remarkably down-regulated after the treatment of celastrol. Taken together, our data showed that celastrol may be developed as a promising agent for treating gefitinib-resistant NSCLCs by inducing apoptosis through caspase-dependent pathways and Hsp90 client protein degradation.
Oncotarget | 2016
Jun Huang; Jiaxi He; Hui Pan; Runze Li; Liyan Huang; Ze-Bo Jiang; Xiaojun Yao; Liang Liu; Elaine Lai-Han Leung; Jianxing He
The discovery of Warburg effect opens a new era in anti-cancer therapy. Aerobic glycolysis is regarded as a hallmark of cancer cells and increasing literatures indicates that metabolic changes are critical for the maintenance and progression of cancer cells. Besides aerobic glycolysis, increased fatty acid synthesis is also required for the rapid growth of cancer cells, and is considered as one of the most typical metabolic symbols of cancer either. Thus, targeting fatty acid metabolism may provide a potential avenue for the diagnosis and therapeutic treatment of cancer. In this study, we have identified Sterol-CoA desaturase-1 (SCD1) which is the rate-limiting enzyme of unsaturated fatty acid synthesis, universally and highly expressed in lung adenocarcinoma and was required for the cell proliferation, migration and invasion. Both in vitro and in vivo studies demonstrated that high expression of SCD1 remarkably enhanced the ability of tumor formation and invasion, while knockdown of SCD1 significantly repressed tumorigenesis and induced cell apoptosis. Clinical association study suggested that high expression of SCD1 is more frequently observed in late stage patients and presents poor prognosis. Taken together, our results suggested that SCD1 is a potentially novel biomarker of lung adenocarcinoma, and targeting SCD1 may represent a new anti-cancer strategy.
Oncotarget | 2015
Ting Li; Vincent Kam Wai Wong; Zhi Hong Jiang; Shui Ping Jiang; Yan Liu; Ting Yu Wang; Xiao Jun Yao; Xiao Hui Su; Feng Gen Yan; Juan Liu; Elaine Lai-Han Leung; Xiao Qin Yi; Yuen Fan Wong; Hua Zhou; Liang Liu
Activation of IκB kinase β (IKK-β) and nuclear factor (NF)-κB signaling contributes to cancer pathogenesis and inflammatory disease; therefore, the IKK-β−NF-κB signaling pathway is a potential therapeutic target. Current drug design strategies focus on blocking NF-κB signaling by binding to specific cysteine residues on IKK-β. However, mutations in IKK-β have been found in patients who may eventually develop drug resistance. For these patients, a new generation of IKK-β inhibitors are required to provide novel treatment options. We demonstrate in vitro that cysteine-46 (Cys-46) is an essential residue for IKK-β kinase activity. We then validate the role of Cys-46 in the pathogenesis of inflammation using delayed-type hypersensitivity (DTH) and an IKK-βC46A transgenic mouse model. We show that a novel IKK-β inhibitor, dihydromyricetin (DMY), has anti-inflammatory effects on WT DTH mice but not IKK-βC46A transgenic mice. These findings reveal the role of Cys-46 in the promotion of inflammatory responses, and suggest that Cys-46 is a novel drug-binding site for the inhibition of IKK-β.
Molecules | 2013
Jian-Lin Wu; Elaine Lai-Han Leung; Hua Zhou; Liang Liu; Na Li
Toosendanin is the major bioactive component of Melia toosendan Sieb. et Zucc., which is traditionally used for treatment of abdominal pain and as an insecticide. Previous studies reported that toosendanin possesses hepatotoxicity, but the mechanism remains unknown. Its bioavailability in rats is low, which indicates the hepatotoxicity might be induced by its metabolites. In this connection, in the current study, we examined the metabolites obtained by incubating toosendanin with human live microsomes, and then six of these metabolites (M1–M6) were identified for the first time by ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry (UHPLC-Q-TOF/MS). Further analysis on the MS spectra showed M1, M2, and M3 are oxidative products and M6 is a dehydrogenation product, while M4 and M5 are oxidative and dehydrogenation products of toosendanin. Moreover, their possible structures were deduced from the MS/MS spectral features. Quantitative analysis demonstrated that M1-M5 levels rapidly increased and reached a plateau at 30 min, while M6 rapidly reached a maximal level at 20 min and then decreased slowly afterwards. These findings have provided valuable data not only for understanding the metabolic fate of toosendanin in liver microsomes, but also for elucidating the possible molecular mechanism of its hepatotoxicity.
Oncogene | 2018
Shidong Lv; Liyan Ji; Bin Chen; Shuqiang Liu; Chengyong Lei; Xi Liu; Xiaoxiao Qi; Ying Wang; Elaine Lai-Han Leung; Hongyi Wang; Lin Zhang; Xiaoming Yu; Zhongqiu Liu; Qiang Wei; Linlin Lu
Abnormalities in epigenetic modifiers are emerging as driving events in prostate cancer (PCa). The histone methyltransferase KMT2D, a frequently aberrant epigenetic modifier in various tumors, has an undefined role in PCa. Moreover, little is known regarding KMT2D’s mutation in Chinese patients or its downstream signaling pathways and targets. Here, we profiled the mutational spectrum of 32 significantly PCa-associated genes by using disease-targeted sequencing, and found that KMT2D was highly mutated (63.04%, 29/46) in Chinese patients. Moreover, high KMT2D transcription was also associated with poor prognosis in an independent cohort (n = 51). In KMT2D-knockdown PC-3 and DU145 cells, cell proliferation (P < 0.01), invasion (P < 0.001), and migration (P < 0.01) were consequently suppressed. KMT2D depletion effectively suppressed tumor growth by 92.21% in vivo. Notably, integrative analyses of RNAseq and ChIPseq characterized two crucial genes downregulated by KMT2D, leukemia inhibitory factor receptor (LIFR) and Kruppel-like factor-4 (KLF4), which are regulators in PI3K/Akt and EMT, respectively. Our present study revealed that KMT2D epigenetically activates PI3K/Akt pathway and EMT by targeting LIFR and KLF4 and thus serves as a putative epigenetic-based target for treating PCa.
Phytochemical Analysis | 2015
Wan-Yi Gu; Na Li; Elaine Lai-Han Leung; Hua Zhou; Xiao-Jun Yao; Liang Liu; Jian-Lin Wu
INTRODUCTION Herbs are an important resource for new drug development. However, the conventional approach for the discovery of new compounds from herbs was time-consuming, tedious, and inefficient. OBJECTIVES Establish a quick approach to identify new minor constituents in herbs. METHODS The constituents in herbs were firstly analysed using ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). Based on the accurate masses, isotopic ions, and the characteristic fragmentation ions in the mass spectra, the molecular compositions and possible structures of compounds were first deduced. After being enriched by a preparative HPLC method, the potential new minor structures were definitely identified by an on-line UHPLC-solid phase extraction-nuclear magnetic resonance-mass spectrometry (UHPLC-SPE-NMR-MS) approach. RESULTS By combined the use of UHPLC-Q-TOF-MS, preparative HPLC and UHPLC-SPE-NMR, three new minor compounds were definitely identified as bis-3,4-dihydroxyphenylpropanoid-substituted catechins (A2 and A3) and 4″-formyl-astilbin (B5). In addition, five isomers of bis-dihydroxyphenylpropanoid-substituted catechin (A1, A4-A7), four isomers of 4″-formyl-astilbin (B1-B4), engeletin formates and isomers (C1-C5), formyl-cinchonains (D1-D4), formyl-caffeoylshikimic acid (E1-E4) were also tentatively determined by MS and MS/MS characterisation. CONCLUSION The combination of UHPLC-Q-TOF-MS, preparative HPLC and UHPLC-SPE-NMR-MS techniques is a quick and effective approach for finding new minor constitutes from herbs.
Molecules | 2015
Wan-Yi Gu; Na Li; Elaine Lai-Han Leung; Hua Zhou; Guo-An Luo; Liang Liu; Jian-Lin Wu
Plant secondary metabolism drives the generation of metabolites used for host plant resistance, as biopesticides and botanicals, even for the discovery of new therapeutics for human diseases. Flavonoids are one of the largest and most studied classes of specialized plant metabolites. To quickly identify the potential bioactive flavonoids in herbs, a metabolites software-assisted flavonoid hunting approach was developed, which mainly included three steps: firstly, utilizing commercial metabolite software, a flavonoids database was established based on the biosynthetic pathways; secondly, mass spectral data of components in herbs were acquired by ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry (UHPLC-Q-TOF-MS); and finally, the acquired LC-MS data were imported into the database and the compounds in the herbs were automatically identified by comparison of their mass spectra with the theoretical values. As a case study, the flavonoids in Smilax glabra were profiled using this approach. As a result, 104 flavonoids including 27 potential new compounds were identified. To our knowledge, this is the first report on profiling the components in the plants utilizing the plant metabolic principles with the assistance of metabolites software. This approach can be extended to the analysis of flavonoids in other plants.
Talanta | 2015
Zhong-Wen Yuan; Elaine Lai-Han Leung; Hua Zhou; Wenzhe Ma; Liang Liu; Ying Xie
Berberine, an isoquinoline alkaloid, has been demonstrated to be a safe anti-cancer agent with multiple effects on mitochondria. Intracellular concentration and distribution around the targeting sites are determinants of efficacy, but subcellular distribution of berberine has not been fully elucidated yet, which relies on the sensitive and robustness assay. In this study, a sensitive and robust UPLC-MS/MS method has been developed and validated with optimized extraction solvents and detection conditions. Key factors such as the purity and integrity of isolated organelle fractions, and the effects of isolation procedures on the subcellular concentration of berberine were systemically evaluated. With the developed assay, we found that the intracellular accumulations of berberine in two gefitinib resistant NSCLC cell lines H1650 and H1975 were 2-3 folds higher than that of normal epithelial cells BEAS-2B. Moreover, significantly different subcellular distribution profiles in NSCLC cancer cells from that of BEAS-2B cells with a striking increase in content in most organelles may contribute to its selective cytotoxicity to cancer cells. Furthermore, a predominant accumulation of berberine was observed for the first time in microsomal fraction for all three cell lines. Therefore, this method could be used for quantitative evaluation of subcellular distribution and cellular accumulation of berberine and for further evaluation of the concentration-effects relationship.
Oncology Reports | 2016
Ze-Bo Jiang; Jun-Xiang Huang; Xie C; Xin Li; Liu L; Jiaxi He; Hui Pan; Liyan Huang; Xiao Jun Yao; Ying Xie; Na Li; He Jx; Elaine Lai-Han Leung
EGFR and KRAS mutations are the two most common driver mutations in non-small cell lung cancer (NSCLC). Molecular target-based therapy using small molecules such as gefitinib has been used for inhibiting EGFR with good initial responses; however, drug resistance is common when using a mono-targeting strategy. At present, KRAS remains an undruggable target. As such, the development of new drugs targeting the downstream of KRAS and EGFR and their crosstalk pathways is critically needed to effectively treat NSCLC. The present study aimed to elucidate the anticancer effects of PI3K (BKM120) and MEK (PD1056309) inhibitors on NSCLC cell lines with KRAS or EGFR mutations. Inhibition of the EGFR and KRAS downstream P13K pathway using BKM120 significantly inhibited the growth of NSCLC cell lines with either EGFR or KRAS mutations. In addition, significant cell cycle arrest and induction of apoptosis were observed following BKM120 treatment. Notably, although the A549 and H358 NSCLC cell lines harbor the same KRAS mutation, A549 cells were less sensitive than H358 cells in the response to BKM120 treatment. Similarly, PC-9 and H1650 cells harbor the same EGFR mutation, however, H1650 was less sensitive to BKM120. Different sensitivity between NSCLC cell lines with the same oncogenic mutation suggests that multiple crosstalk pathways exit. Combined usage of BKM120 and PD1056309 synergistically enhanced apoptosis in the A549 cells and mildly enhanced apoptosis in the H1650 and H358 cells, suggesting the crosstalk of the MEK pathway with the P13K/Akt pathways in these cell lines. Overall, our findings suggest that inhibition of EGFR and KRAS downstream with a P13K/Akt inhibitor could be useful for treating NSCLC. However, for NSCLC exhibiting crosstalk with other survival pathways, such as the MEK pathway, combination treatment is required.