Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elaine M. Hurt is active.

Publication


Featured researches published by Elaine M. Hurt.


Immunity | 2002

Blimp-1 Orchestrates Plasma Cell Differentiation by Extinguishing the Mature B Cell Gene Expression Program

Arthur L. Shaffer; Kuo-I Lin; Tracy C. Kuo; Xin Yu; Elaine M. Hurt; Andreas Rosenwald; Jena M. Giltnane; Liming Yang; Hong Zhao; Kathryn Calame; Louis M. Staudt

Blimp-1, a transcriptional repressor, drives the terminal differentiation of B cells to plasma cells. Using DNA microarrays, we found that introduction of Blimp-1 into B cells blocked expression of a remarkably large set of genes, while a much smaller number was induced. Blimp-1 initiated this cascade of gene expression changes by directly repressing genes encoding several transcription factors, including Spi-B and Id3, that regulate signaling by the B cell receptor. Blimp-1 also inhibited immunoglobulin class switching by blocking expression of AID, Ku70, Ku86, DNA-PKcs, and STAT6. These findings suggest that Blimp-1 promotes plasmacytic differentiation by extinguishing gene expression important for B cell receptor signaling, germinal center B cell function, and proliferation while allowing expression of important plasma cell genes such as XBP-1.


Genome Biology | 2001

Genomic-scale measurement of mRNA turnover and the mechanisms of action of the anti-cancer drug flavopiridol

Lloyd T. Lam; Oxana K. Pickeral; Amy C Peng; Andreas Rosenwald; Elaine M. Hurt; Jena M. Giltnane; Lauren Averett; Hong Zhao; R. Eric Davis; Mohan Sathyamoorthy; Larry M. Wahl; Eric D Harris; Judy A Mikovits; Anne Monks; Melinda G. Hollingshead; Edward A. Sausville; Louis M. Staudt

BackgroundFlavopiridol, a flavonoid currently in cancer clinical trials, inhibits cyclin-dependent kinases (CDKs) by competitively blocking their ATP-binding pocket. However, the mechanism of action of flavopiridol as an anti-cancer agent has not been fully elucidated.ResultsUsing DNA microarrays, we found that flavopiridol inhibited gene expression broadly, in contrast to two other CDK inhibitors, roscovitine and 9-nitropaullone. The gene expression profile of flavopiridol closely resembled the profiles of two transcription inhibitors, actinomycin D and 5,6-dichloro-1-β-D-ribofuranosyl-benzimidazole (DRB), suggesting that flavopiridol inhibits transcription globally. We were therefore able to use flavopiridol to measure mRNA turnover rates comprehensively and we found that different functional classes of genes had distinct distributions of mRNA turnover rates. In particular, genes encoding apoptosis regulators frequently had very short half-lives, as did several genes encoding key cell-cycle regulators. Strikingly, genes that were transcriptionally inducible were disproportionately represented in the class of genes with rapid mRNA turnover.ConclusionsThe present genomic-scale measurement of mRNA turnover uncovered a regulatory logic that links gene function with mRNA half-life. The observation that transcriptionally inducible genes often have short mRNA half-lives demonstrates that cells have a coordinated strategy to rapidly modulate the mRNA levels of these genes. In addition, the present results suggest that flavopiridol may be more effective against types of cancer that are highly dependent on genes with unstable mRNAs.


British Journal of Cancer | 2008

CD44+ CD24(-) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis.

Elaine M. Hurt; Brian T. Kawasaki; George J. Klarmann; Suneetha B. Thomas; William L. Farrar

Recent evidence supports the hypothesis that cancer stem cells are responsible for tumour initiation and formation. Using flow cytometry, we isolated a population of CD44+CD24− prostate cells that display stem cell characteristics as well as gene expression patterns that predict overall survival in prostate cancer patients. CD44+CD24− cells form colonies in soft agar and form tumours in NOD/SCID mice when as few as 100 cells are injected. Furthermore, CD44+CD24− cells express genes known to be important in stem cell maintenance, such as BMI-1 and Oct-3/4. Moreover, we can maintain CD44+CD24− prostate stem-like cells as nonadherent spheres in serum-replacement media without substantially shifting gene expression. Addition of serum results in adherence to plastic and shifts gene expression patterns to resemble the differentiated parental cells. Thus, we propose that CD44+CD24− prostate cells are stem-like cells responsible for tumour initiation and we provide a genomic definition of these cells and the differentiated cells they give rise to. Furthermore, gene expression patterns of CD44+CD24− cells have a genomic signature that is predictive of poor patient prognosis. Therefore, CD44+CD24− LNCaP prostate cells offer an attractive model system to both explore the biology important to the maintenance and differentiation of prostate cancer stem cells as well as to develop the therapeutics, as the gene expression pattern in these cells is consistent with poor survival in prostate cancer patients.


Immunity | 2001

Signatures of the immune response.

Arthur L. Shaffer; Andreas Rosenwald; Elaine M. Hurt; Jena M. Giltnane; Lloyd T. Lam; Oxana K. Pickeral; Louis M. Staudt

A compendium of global gene expression measurements from DNA microarray analysis of immune cells identifies gene expression signatures defining various lineages, differentiation stages, and signaling pathways. Germinal center (GC) B cells represent a discrete stage of differentiation with a unique gene expression signature. This includes genes involved in proliferation, as evidenced by high expression of G2/M phase regulators and low expression of ribosomal and metabolic genes that are transcriptional targets of c-myc. GC B cells also lack expression of the NF-kappaB signature genes, which may favor apoptosis. Finally, the transcriptional repression signature of BCL-6 reveals how this factor can prevent terminal differentiation of B cells and cause B cell lymphomas.


Cancer Cell | 2004

Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma.

Elaine M. Hurt; Adrian Wiestner; Andreas Rosenwald; Arthur L. Shaffer; Elias Campo; T. M. Grogan; P. Leif Bergsagel; W. Michael Kuehl; Louis M. Staudt

The oncogene c-maf is translocated in approximately 5%-10% of multiple myelomas. Unexpectedly, we observed c-maf expression in myeloma cell lines lacking c-maf translocations and in 50% of multiple myeloma bone marrow samples. By gene expression profiling, we identified three c-maf target genes: cyclin D2, integrin beta7, and CCR1. c-maf transactivated the cyclin D2 promoter and enhanced myeloma proliferation, whereas dominant inhibition of c-maf blocked tumor formation in immunodeficient mice. c-maf-driven expression of integrin beta7 enhanced myeloma adhesion to bone marrow stroma and increased production of VEGF. We propose that c-maf transforms plasma cells by stimulating cell cycle progression and by altering bone marrow stromal interactions. The frequent overexpression of c-maf in myeloma makes it an attractive target for therapeutic intervention.


Clinical & Experimental Metastasis | 2009

Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature

George J. Klarmann; Elaine M. Hurt; Lesley A. Mathews; Xiaohu Zhang; María Ana Duhagon; Tashan Mistree; Suneetha B. Thomas; William L. Farrar

Development of metastasis is a leading cause of cancer-induced death. Acquisition of an invasive tumor cell phenotype suggests loss of cell adhesion and basement membrane breakdown during a process termed epithelial-to-mesenchymal transition (EMT). Recently, cancer stem cells (CSC) were discovered to mediate solid tumor initiation and progression. Prostate CSCs are a subpopulation of CD44+ cells within the tumor that give rise to differentiated tumor cells and also self-renew. Using both primary and established prostate cancer cell lines, we tested the assumption that CSCs are more invasive. The ability of unsorted cells and CD44-positve and -negative subpopulations to undergo Matrigel invasion and EMT was evaluated, and the gene expression profiles of these cells were analyzed by microarray and a subset confirmed using QRT-PCR. Our data reveal that a subpopulation of CD44+ CSC-like cells invade Matrigel through an EMT, while in contrast, CD44− cells are non-invasive. Furthermore, the genomic profile of the invasive cells closely resembles that of CD44+CD24− prostate CSCs and shows evidence for increased Hedgehog signaling. Finally, invasive cells from DU145 and primary prostate cancer cells are more tumorigenic in NOD/SCID mice compared with non-invasive cells. Our data strongly suggest that basement membrane invasion, an early and necessary step in metastasis development, is mediated by these potential cancer stem cells.


Cancer Research | 2005

Interleukin 6 Supports the Maintenance of p53 Tumor Suppressor Gene Promoter Methylation

David R. Hodge; Benjamin Peng; James C. Cherry; Elaine M. Hurt; Stephen D. Fox; James A. Kelley; David J. Munroe; William L. Farrar

A strong association exists between states of chronic inflammation and cancer, and it is believed that mediators of inflammation may be responsible for this phenomenon. Interleukin 6 (IL-6) is an inflammatory cytokine known to play a role in the growth and survival of many types of tumors, yet the mechanisms employed by this pleomorphic cytokine to accomplish this feat are still poorly understood. Another important factor in tumor development seems to be the hypermethylation of CpG islands located within the promoter regions of tumor suppressor genes. This common epigenetic alteration enables tumor cells to reduce or inactivate the expression of important tumor suppressor and cell cycle regulatory genes. Here we show that in the IL-6-responsive human multiple myeloma cell line KAS 6/1, the promoter region of p53 is epigenetically modified by methyltransferases, resulting in decreased levels of expression. Furthermore, cells treated with IL-6 exhibit an increase in the expression of the DNA maintenance methylation enzyme, DNMT-1. The DNA methyltransferase inhibitor zebularine reverses the methylation of the p53 promoter, allowing the resumption of its expression. However, when zebularine is withdrawn from the cells, the reestablishment of the original CpG island methylation within the p53 promoter does not occur in the absence of IL-6, and cells which do not receive IL-6 eventually die, as p53 expression continues unchecked by remethylation. Interestingly, this loss of viability seems to involve not the withdrawal of cytokine, but the inability of the cell to resilence the promoter. Consistent with this model, when cells that express IL-6 in an autocrine fashion are subjected to identical treatment, p53 expression is reduced shortly after withdrawal of zebularine. Therefore, it seems IL-6 is capable of maintaining promoter methylation thus representing one of the possible mechanisms used by inflammatory mediators in the growth and survival of tumors.


Molecular Cancer | 2011

Pharmacologic disruption of Polycomb repressive complex 2 inhibits tumorigenicity and tumor progression in prostate cancer

Francesco Crea; Elaine M. Hurt; Lesley A. Mathews; Stephanie M. Cabarcas; Lei Sun; Victor E. Marquez; Romano Danesi; William L. Farrar

BackgroundPolycomb repressive complex 2 (PRC2) mediates gene silencing through histone H3K27 methylation. PRC2 components are over-expressed in metastatic prostate cancer (PC), and are required for cancer stem cell (CSC) self-renewal. 3-Dezaneplanocin-A (DZNeP) is an inhibitor of PRC2 with broad anticancer activity.Methodwe investigated the effects of DZNeP on cell proliferation, tumorigenicity and invasive potential of PC cell lines (LNCaP and DU145).ResultsExploring GEO and Oncomine databases, we found that specific PRC2 genes (EED, EZH2, SUZ12) predict poor prognosis in PC. Non-toxic DZNeP concentrations completely eradicated LNCaP and DU145 prostatosphere formation, and significantly reduced the expression of CSC markers. At comparable doses, other epigenetic drugs were not able to eradicate CSCs. DZNeP was also able to reduce PC cell invasion. Cells pre-treated with DZNeP were significantly less tumorigenic (LNCaP) and formed smaller tumors (DU145) in immunocompromised mice.ConclusionDZNeP is effective both in vitro and in vivo against PC cells. DZNeP antitumor activity is in part mediated by inhibition of CSC tumorigenic potential.


Molecular Interventions | 2008

Targeting cancer stem cells with phytochemicals.

Brian T. Kawasaki; Elaine M. Hurt; Tashan Mistree; William L. Farrar

Cancer, second only to heart disease, is the leading cause of death in the US. Although progress has been made in the early detection of cancer and in improvements of cancer therapies, the ability to provide long-term survival has been limited. Increasing evidence suggests that a minute, biologically unique population of cancer stem cells (SCs) exists in most neoplasms and may be responsible for tumor initiation, progression, metastasis, and relapse. Characterization of cancer SCs has led to the identification of key cellular activities that may make cancer SCs vulnerable to therapeutic interventions that target drug-effluxing capabilities, stem cell pathways, anti-apoptotic mechanisms, and induction of differentiation. Phytochemicals, compounds made from fruits, vegetables, and grains, possess anti-cancer properties and represent a promising therapeutic approach for the prevention and treatment of many cancers. This review summarizes the evidence for the cancer SC hypothesis and discusses the potential mechanisms by which phytochemicals might target cancer SCs.


Journal of Biological Chemistry | 2003

Analysis of γc-Family Cytokine Target Genes IDENTIFICATION OF DUAL-SPECIFICITY PHOSPHATASE 5 (DUSP5) AS A REGULATOR OF MITOGEN-ACTIVATED PROTEIN KINASE ACTIVITY IN INTERLEUKIN-2 SIGNALING

Panu E. Kovanen; Andreas Rosenwald; Jacqueline Fu; Elaine M. Hurt; Lloyd T. Lam; Jena M. Giltnane; George E. Wright; Louis M. Staudt; Warren J. Leonard

Interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15, and IL-21 form a family of cytokines based on their sharing the common cytokine receptor γ chain, γc, which is mutated in X-linked severe combined immunodeficiency (SCID). As a step toward further elucidating the mechanism of action of these cytokines in T-cell biology, we compared the gene expression profiles of IL-2, IL-4, IL-7, and IL-15 in T cells using cDNA microarrays. IL-2, IL-7, and IL-15 each induced a highly similar set of genes, whereas IL-4 induced distinct genes correlating with differential STAT protein activation by this cytokine. One gene induced by IL-2, IL-7, and IL-15 but not IL-4 was dual-specificity phosphatase 5 (DUSP5). In IL-2-dependent CTLL-2 cells, we show that IL-2-induced ERK-1/2 activity was inhibited by wild type DUSP5 but markedly increased by an inactive form of DUSP5, suggesting a negative feedback role for DUSP5 in IL-2 signaling. Our findings provide insights into the shared versus distinctive actions by different members of the γc family of cytokines. Moreover, we have identified a DUSP5-dependent negative regulatory pathway for MAPK activity in T cells.

Collaboration


Dive into the Elaine M. Hurt's collaboration.

Top Co-Authors

Avatar

William L. Farrar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Suneetha B. Thomas

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Rosenwald

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Brian T. Kawasaki

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Louis M. Staudt

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arthur L. Shaffer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jena M. Giltnane

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge