Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elaine R. Podell is active.

Publication


Featured researches published by Elaine R. Podell.


Science | 1996

Crystal Structure of a Group I Ribozyme Domain: Principles of RNA Packing

Jamie H. D. Cate; Anne R. Gooding; Elaine R. Podell; Kaihong Zhou; Barbara L. Golden; Craig E. Kundrot; Thomas R. Cech; Jennifer A. Doudna

Group I self-splicing introns catalyze their own excision from precursor RNAs by way of a two-step transesterification reaction. The catalytic core of these ribozymes is formed by two structural domains. The 2.8-angstrom crystal structure of one of these, the P4-P6 domain of the Tetrahymena thermophila intron, is described. In the 160-nucleotide domain, a sharp bend allows stacked helices of the conserved core to pack alongside helices of an adjacent region. Two specific long-range interactions clamp the two halves of the domain together: a two-Mg2+-coordinated adenosine-rich corkscrew plugs into the minor groove of a helix, and a GAAA hairpin loop binds to a conserved 11-nucleotide internal loop. Metal- and ribose-mediated backbone contacts further stabilize the close side-by-side helical packing. The structure indicates the extent of RNA packing required for the function of large ribozymes, the spliceosome, and the ribosome.


Nature | 2007

The POT1–TPP1 telomere complex is a telomerase processivity factor

Feng Wang; Elaine R. Podell; Arthur J. Zaug; Yuting Yang; Paul Baciu; Thomas R. Cech; Ming Lei

Telomeres were originally defined as chromosome caps that prevent the natural ends of linear chromosomes from undergoing deleterious degradation and fusion events. POT1 (protection of telomeres) protein binds the single-stranded G-rich DNA overhangs at human chromosome ends and suppresses unwanted DNA repair activities. TPP1 is a previously identified binding partner of POT1 that has been proposed to form part of a six-protein shelterin complex at telomeres. Here, the crystal structure of a domain of human TPP1 reveals an oligonucleotide/oligosaccharide-binding fold that is structurally similar to the β-subunit of the telomere end-binding protein of a ciliated protozoan, suggesting that TPP1 is the missing β-subunit of human POT1 protein. Telomeric DNA end-binding proteins have generally been found to inhibit rather than stimulate the action of the chromosome end-replicating enzyme, telomerase. In contrast, we find that TPP1 and POT1 form a complex with telomeric DNA that increases the activity and processivity of the human telomerase core enzyme. We propose that POT1–TPP1 switches from inhibiting telomerase access to the telomere, as a component of shelterin, to serving as a processivity factor for telomerase during telomere extension.


Science | 1996

RNA Tertiary Structure Mediation by Adenosine Platforms

Jamie H. D. Cate; Anne R. Gooding; Elaine R. Podell; Kaihong Zhou; Barbara L. Golden; Alexander A. Szewczak; Craig E. Kundrot; Thomas R. Cech; Jennifer A. Doudna

The crystal structure of a group I intron domain reveals an unexpected motif that mediates both intra- and intermolecular interactions. At three separate locations in the 160-nucleotide domain, adjacent adenosines in the sequence lie side-by-side and form a pseudo-base pair within a helix. This adenosine platform opens the minor groove for base stacking or base pairing with nucleotides from a noncontiguous RNA strand. The platform motif has a distinctive chemical modification signature that may enable its detection in other structured RNAs. The ability of this motif to facilitate higher order folding provides oneexplanation for the abundance of adenosine residues in internal loops of many RNAs.


Nature Structural & Molecular Biology | 2004

Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection

Ming Lei; Elaine R. Podell; Thomas R. Cech

The POT1 (protection of telomeres 1) protein binds the single-stranded overhang at the ends of chromosomes in diverse eukaryotes. It is essential for chromosome end-protection in the fission yeast Schizosaccharomyces pombe, and it is involved in regulation of telomere length in human cells. Here, we report the crystal structure at a resolution of 1.73 Å of the N-terminal half of human POT1 (hPOT1) protein bound to a telomeric single-stranded DNA (ssDNA) decamer, TTAGGGTTAG, the minimum tight-binding sequence indicated by in vitro binding assays. The structure reveals that hPOT1 contains two oligonucleotide/ oligosaccharide-binding (OB) folds; the N-terminal OB fold binds the first six nucleotides, resembling the structure of the S. pombe Pot1pN–ssDNA complex, whereas the second OB fold binds and protects the 3′ end of the ssDNA. These results provide an atomic-resolution model for chromosome end-capping.


Nature | 2003

DNA self-recognition in the structure of pot1 bound to telomeric single-stranded DNA

Ming Lei; Elaine R. Podell; Peter Baumann; Thomas R. Cech

Telomeres, specialized protein–DNA complexes that cap the ends of linear chromosomes, are essential for protecting chromosomes from degradation and end-to-end fusions. The Pot1 (protection of telomeres 1) protein is a widely distributed eukaryotic end-capping protein, having been identified in fission yeast, microsporidia, plants and animals. Schizosaccharomyces pombe Pot1p is essential for telomere maintenance, and human POT1 has been implicated in telomerase regulation. Pot1 binds telomeric single-stranded DNA (ssDNA) with exceptionally high sequence specificity, the molecular basis of which has been unknown. Here we describe the 1.9-Å-resolution crystal structure of the amino-terminal DNA-binding domain of S. pombe Pot1p complexed with ssDNA. The protein adopts an oligonucleotide/oligosaccharide-binding (OB) fold with two loops that protrude to form a clamp for ssDNA binding. The structure explains the sequence specificity of binding: in the context of the Pot1 protein, DNA self-recognition involving base-stacking and unusual G–T base pairs compacts the DNA. Any sequence change disrupts the ability of the DNA to form this structure, preventing it from contacting the array of protein hydrogen-bonding groups. The structure also explains how Pot1p avoids binding the vast excess of RNA in the nucleus.


Molecular and Cellular Biology | 2002

Human Pot1 (Protection of Telomeres) Protein: Cytolocalization, Gene Structure, and Alternative Splicing

Peter Baumann; Elaine R. Podell; Thomas R. Cech

ABSTRACT Fission yeast Pot1 (protection of telomeres) is a single-stranded telomeric DNA binding protein with a critical role in ensuring chromosome stability. A putative human homolog (hPot1) was previously identified, based on moderate sequence similarity with fission yeast Pot1 and telomere end-binding proteins from ciliated protozoa. Using indirect immunofluorescence, we show here that epitope-tagged hPot1 localizes to telomeres in interphase nuclei of human cells, consistent with a direct role in telomere end protection. The hPOT1 gene contains 22 exons, most of which are present in all cDNAs examined. However, four exons are subject to exon skipping in some transcripts, giving rise to five splice variants. Four of these are ubiquitously expressed, whereas the fifth appears to be specific to leukocytes. The resultant proteins vary significantly in their ability to form complexes with single-stranded telomeric DNA as judged by electrophoretic mobility shift assays. In addition to these splice variants, the Pot1 family is expanded by the identification of six more genes from diverse species. Pot1-like proteins have now been found in plants, animals, yeasts, and microsporidia.


Nature Structural & Molecular Biology | 2006

Crystal structure of the essential N-terminal domain of telomerase reverse transcriptase.

Steven A. Jacobs; Elaine R. Podell; Thomas R. Cech

Telomerase, a ribonucleoprotein enzyme, adds telomeric DNA repeats to the ends of linear chromosomes. Here we report the first high-resolution structure of any portion of the telomerase reverse transcriptase, the telomerase essential N-terminal (TEN) domain from Tetrahymena thermophila. The structure, which seems to represent a novel protein fold, shows phylogenetically conserved amino acid residues in a groove on its surface. These residues are crucial for telomerase catalytic activity, and several of them are required for sequence-specific binding of a single-stranded telomeric DNA primer. The positively charged C terminus, which becomes ordered upon interaction with other macromolecules, is involved in binding RNA in a non–sequence-specific manner. The TEN domains ability to bind both RNA and telomeric DNA, coupled with the notably strong effects on activity upon mutagenesis of single surface residues, suggest how this domain contributes to telomerase catalysis.


Structure | 2001

Structural basis of the enhanced stability of a mutant ribozyme domain and a detailed view of RNA--solvent interactions.

Kara Juneau; Elaine R. Podell; Daniel J. Harrington; Thomas R. Cech

BACKGROUND The structure of P4-P6, a 160 nucleotide domain of the self-splicing Tetrahymena thermophila intron, was solved previously. Mutants of the P4-P6 RNA that form a more stable tertiary structure in solution were recently isolated by successive rounds of in vitro selection and amplification. RESULTS We show that a single-site mutant (Delta C209) possessing greater tertiary stability than wild-type P4-P6 also crystallizes much more rapidly and under a wider variety of conditions. The crystal structure provides a satisfying explanation for the increased stability of the mutant; the deletion of C209 allows the adjacent bulged adenine to enter the P4 helix and form an A-G base pair, presumably attenuating the conformational flexibility of the helix. The structure of another mutant (Delta A210) was also solved and supports this interpretation. The crystals of Delta C209 diffract to a higher resolution limit than those of wild-type RNA (2.25 A versus 2.8 A), allowing assignment of innersphere and outersphere coordination contacts for 27 magnesium ions. Structural analysis reveals an intricate solvent scaffold with a preponderance of ordered water molecules on the inside rather than the surface of the folded RNA domain. CONCLUSIONS In vitro evolution facilitated the identification of a highly stable, structurally homogeneous mutant RNA that was readily crystallizable. Analysis of the structure suggests that improving RNA secondary structure can stabilize tertiary structure and perhaps promote crystallization. In addition, the higher resolution model provides new details of metal ion-RNA interactions and identifies a core of ordered water molecules that may be integral to RNA tertiary structure formation.


Cell Reports | 2013

RNA seeds higher-order assembly of FUS protein.

Jacob C. Schwartz; Xueyin Wang; Elaine R. Podell; Thomas R. Cech

The abundant nuclear RNA binding protein FUS binds the C-terminal domain (CTD) of RNA polymerase II in an RNA-dependent manner, affecting Ser2 phosphorylation and transcription. Here, we examine the mechanism of this process and find that RNA binding nucleates the formation of higher-order FUS ribonucleoprotein assemblies that bind the CTD. Both the low-complexity domain and the arginine-glycine rich domain of FUS contribute to assembly. The assemblies appear fibrous by electron microscopy and have characteristics of β zipper structures. These results support the emerging view that the pathologic protein aggregation seen in neurodegenerative diseases such as amyotrophic lateral sclerosis may occur via the exaggeration of functionally important assemblies of RNA binding proteins.


Genes & Development | 2012

FUS binds the CTD of RNA polymerase II and regulates its phosphorylation at Ser2

Jacob C. Schwartz; Christopher C. Ebmeier; Elaine R. Podell; Joseph Heimiller; Dylan J. Taatjes; Thomas R. Cech

Mutations in the RNA-binding protein FUS (fused in sarcoma)/TLS have been shown to cause the neurodegenerative disease amyotrophic lateral sclerosis (ALS), but the normal role of FUS is incompletely understood. We found that FUS binds the C-terminal domain (CTD) of RNA polymerase II (RNAP2) and prevents inappropriate hyperphosphorylation of Ser2 in the RNAP2 CTD at thousands of human genes. The loss of FUS leads to RNAP2 accumulation at the transcription start site and a shift in mRNA isoform expression toward early polyadenylation sites. Thus, in addition to its role in alternative RNA splicing, FUS has a general function in orchestrating CTD phosphorylation during RNAP2 transcription.

Collaboration


Dive into the Elaine R. Podell's collaboration.

Top Co-Authors

Avatar

Thomas R. Cech

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Anne R. Gooding

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Arthur J. Zaug

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ming Lei

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Dylan J. Taatjes

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Daniel J. Harrington

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Deborah S. Wuttke

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Jacob C. Schwartz

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jennifer A. Doudna

Howard Hughes Medical Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge