Elaine S. Krul
Solae
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elaine S. Krul.
The American Journal of Clinical Nutrition | 2010
Shawna L. Lemke; John L. Vicini; Hong Su; Daniel A. Goldstein; Margaret A. Nemeth; Elaine S. Krul; William S. Harris
BACKGROUND The benefits of omega-3 (n-3) long-chain polyunsaturated fatty acids to heart health are well established. Stearidonic acid (SDA, 18:4n-3) may contribute to these benefits. OBJECTIVE The objective was to evaluate the ability of SDA-containing soybean oil to increase the omega-3 index [erythrocyte eicosapentaenoic acid (EPA) + docosahexaenoic acid, as a percentage of total fatty acids] and to affect other cardiovascular disease risk markers compared with EPA and regular soy oil (control). DESIGN This was a randomized, placebo-controlled, double-blind multicenter study in which 252 overweight subjects were randomly assigned to 1 of 3 treatments for 12 wk: 1 g encapsulated soybean oil/d plus 14.7 g liquid soybean oil/d to be mixed in food (control group), 1 g encapsulated EPA/d plus 14.7 g liquid soybean oil/d (EPA group), and 1 g encapsulated soybean oil/d plus 14.7 g liquid SDA-enriched soybean oil/d, providing 4.2 g SDA (SDA group). Subjects consumed treatment oils in exchange for other oils in their diet. RESULTS The mean (±SE) baseline omega-3 index was similar between treatments, but after 12 wk of treatment values for this index were 4.15 ± 0.12%, 4.84 ± 0.13%, and 4.69 ± 0.15% for control, EPA, and SDA groups, respectively. Values for the EPA and SDA groups were greater than those for control subjects in the intent-to-treat population (P < 0.001 and P = 0.006, respectively). No adverse treatment-related effects of SDA-enriched soybean oil were reported. CONCLUSIONS SDA-enriched soybean oil increased the omega-3 index by raising erythrocyte EPA concentrations. SDA-enriched soybean oil is a land-based n-3 fatty acid that is a sustainable approach to increasing tissue concentrations of long-chain polyunsaturated n-3 fatty acids.
Prostaglandins Leukotrienes and Essential Fatty Acids | 2012
Elaine S. Krul; Shawna L. Lemke; Ratna Mukherjea; Mary L. Taylor; Daniel A. Goldstein; Hong Su; P. Liu; A. Lawless; William S. Harris; Kevin C. Maki
OBJECTIVE The purpose of this randomized, controlled, parallel group study was to characterize the relationships between dosages of stearidonic acid (SDA) and eicosapentaenoic acid (EPA), and incorporation of EPA into red blood cell (RBC) membranes over time. METHODS Healthy subjects (n=131) received capsules with placebo (safflower oil), SDA (0.43, 1.3, 2.6, or 5.2 g/d) or EPA (0.44, 1.3, or 2.7 g/d) for 12 weeks. RBC fatty acids were analyzed biweekly. RESULTS RBC %EPA increased in all EPA and SDA groups (p<0.02 vs. control) except the 0.43 g/d SDA group (p=0.187). For theoretical intakes of EPA of 0.25, 0.5, and 0.89 g/d, the amounts of SDA needed to achieve equivalent RBC EPA enrichment were 0.61, 1.89, and 5.32 g/d (conversion efficiencies of 41%, 26%, and 17%), respectively. CONCLUSIONS SDA increased RBC %EPA in a dosage and time-dependent manner at intakes as low as 1.3 g/d.
Journal of Clinical Lipidology | 2010
Kevin C. Maki; Dustie N. Butteiger; Tia M. Rains; Andrea Lawless; Matthew S. Reeves; Chuck Schasteen; Elaine S. Krul
BACKGROUND Soy protein (SP) and low-fat dairy product consumption have been suggested to have hypocholesterolemic effects, although the responsible mechanisms are poorly understood. OBJECTIVE This randomized, controlled, parallel arm trial evaluated the effects of an insoluble fraction of SP and total milk proteins (TMPs) with high calcium content on the fasting lipid profile. It also assessed the potential contributions of increased excretion of bile acids and neutral sterols to their lipid-altering effects. METHODS Subjects with hypercholesterolemia (low-density lipoprotein cholesterol [LDL-C] 100-199 mg/dL) followed the Therapeutic Lifestyle Changes diet for 4 weeks, followed by a 2-week lead-in with 3.75 g/d colesevelam HCl. Individuals with LDL-C lowering of ≥5.0% with colesevelam HCl were randomly assigned to one of two groups after a 3-week washout: 1) 25 g/d of an insoluble fraction of partially hydrolyzed SP or 2) 25 g/d TMP. RESULTS Both SP and TMP reduced atherogenic lipoproteins, as indicated by changes in total cholesterol (-7.4% and -3.6%), LDL-C (-10.9% and -5.9%), nonhigh-density lipoprotein cholesterol (-10.8% and -3.9%), and apolipoprotein B (-9.7% and -2.4%), respectively (P < .05 for between group differences except LDL-C, P = .085). No significant increases were observed in either group for fecal bile acids or neutral sterols. CONCLUSION These results confirm that SP consumption exerts a hypocholesterolemic effect and indicate that TMP elicits a less pronounced response. However, these findings do not support the hypothesis that increased bile acid excretion is an important contributor to the hypocholesterolemic effects of either protein source.
BMJ Open | 2014
David J.A. Jenkins; Julia M. W. Wong; Cyril W.C. Kendall; Amin Esfahani; Vivian Ng; Tracy Leong; Dorothea Faulkner; E. Vidgen; Gregory Paul; Ratna Mukherjea; Elaine S. Krul; William Singer
Objective Low-carbohydrate diets may be useful for weight loss. Diets high in vegetable proteins and oils may reduce the risk of coronary heart disease. The main objective was to determine the longer term effect of a diet that was both low-carbohydrate and plant-based on weight loss and low-density lipoprotein cholesterol (LDL-C). Design, setting, participants A parallel design study of 39 overweight hyperlipidaemic men and postmenopausal women conducted at a Canadian university-affiliated hospital nutrition research centre from April 2005 to November 2006. Intervention Participants were advised to consume either a low-carbohydrate vegan diet or a high-carbohydrate lacto-ovo vegetarian diet for 6 months after completing 1-month metabolic (all foods provided) versions of these diets. The prescribed macronutrient intakes for the low-carbohydrate and high-carbohydrate diets were: 26% and 58% of energy from carbohydrate, 31% and 16% from protein and 43% and 25% from fat, respectively. Primary outcome Change in body weight. Results 23 participants (50% test, 68% control) completed the 6-month ad libitum study. The approximate 4 kg weight loss on the metabolic study was increased to −6.9 kg on low-carbohydrate and −5.8 kg on high-carbohydrate 6-month ad libitum treatments (treatment difference (95% CI) −1.1 kg (−2.1 to 0.0), p=0.047). The relative LDL-C and triglyceride reductions were also greater on the low-carbohydrate treatment (treatment difference (95% CI) −0.49 mmol/L (−0.70 to −0.28), p<0.001 and −0.34 mmol/L (−0.57 to −0.11), p=0.005, respectively), as were the total cholesterol:HDL-C and apolipoprotein B:A1 ratios (−0.57 (−0.83, −0.32), p<0.001 and −0.05 (−0.09, −0.02), p=0.003, respectively). Conclusions A self-selected low-carbohydrate vegan diet, containing increased protein and fat from gluten and soy products, nuts and vegetable oils, had lipid lowering advantages over a high-carbohydrate, low-fat weight loss diet, thus improving heart disease risk factors. Trial Registration clinicaltrials.gov (http://www.clinicaltrials.gov/), #NCT00256516.
World journal of nephrology | 2016
Nancy McGraw; Elaine S. Krul; Elizabeth Grunz-Borgmann; Alan R. Parrish
Chronic kidney disease (CKD) is a significant public health problem as risk factors such as advanced age, obesity, hypertension and diabetes rise in the global population. Currently there are no effective pharmacologic treatments for this disease. The role of diet is important for slowing the progression of CKD and managing symptoms in later stages of renal insufficiency. While low protein diets are generally recommended, maintaining adequate levels of intake is critical for health. There is an increasing appreciation that the source of protein may also be important. Soybean protein has been the most extensively studied plant-based protein in subjects with kidney disease and has demonstrated renal protective properties in a number of clinical studies. Soy protein consumption has been shown to slow the decline in estimated glomerular filtration rate and significantly improve proteinuria in diabetic and non-diabetic patients with nephropathy. Soys beneficial effects on renal function may also result from its impact on certain physiological risk factors for CKD such as dyslipidemia, hypertension and hyperglycemia. Soy intake is also associated with improvements in antioxidant status and systemic inflammation in early and late stage CKD patients. Studies conducted in animal models have helped to identify the underlying molecular mechanisms that may play a role in the positive effects of soy protein on renal parameters in polycystic kidney disease, metabolically-induced kidney dysfunction and age-associated progressive nephropathy. Despite the established relationship between soy and renoprotection, further studies are needed for a clear understanding of the role of the cellular and molecular target(s) of soy protein in maintaining renal function.
Lipids in Health and Disease | 2013
John M Casey; William J. Banz; Elaine S. Krul; Dustie N. Butteiger; Daniel A. Goldstein; Jeremy E. Davis
BackgroundConsumption of marine-based oils high in omega-3 polyunsaturated fatty acids (n3PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is known to protect against obesity-related pathologies. It is less clear whether traditional vegetable oils with high omega-6 polyunsaturated fatty acid (n6PUFA) content exhibit similar therapeutic benefits. As such, this study examined the metabolic effects of a plant-based n3PUFA, stearidonic acid (SDA), in polygenic obese rodents.MethodsLean (LZR) and obese Zucker (OZR) rats were provided either a standard westernized control diet (CON) with a high n6PUFA to n3PUFA ratio (i.e., 16.2/1.0) or experimental diet modified with flaxseed (FLAX), menhaden (FISH), or SDA oil that resulted in n6PUFA to n3PUFA ratios of 1.7/1.0, 1.3/1.0, and 1.0/0.8, respectively.ResultsAfter 12 weeks, total adiposity, dyslipidemia, glucose intolerance, and hepatic steatosis were all greater, whereas n3PUFA content in liver, adipose, and muscle was lower in OZR vs. LZR rats. Obese rodents fed modified FISH or SDA diets had lower serum lipids and hepatic fat content vs. CON. The omega-3 index (i.e., ΣEPA + DHA in erythrocyte membrane) was 4.0, 2.4, and 2.0-fold greater in rodents provided FISH, SDA, and FLAX vs. CON diet, irrespective of genotype. Total hepatic n3PUFA and DHA was highest in rats fed FISH, whereas both hepatic and extra-hepatic EPA was higher with FISH and SDA groups.ConclusionsThese data indicate that SDA oil represents a viable plant-derived source of n3PUFA, which has therapeutic implications for several obesity-related pathologies.
British Journal of Nutrition | 2017
Chesney K. Richter; Ann C. Skulas-Ray; Jennifer A. Fleming; Christina J. Link; Ratna Mukherjea; Elaine S. Krul; Penny M. Kris-Etherton
Emerging CVD risk factors (e.g. HDL function and central haemodynamics) may account for residual CVD risk experienced by individuals who meet LDL-cholesterol and blood pressure (BP) targets. Recent evidence suggests that these emerging risk factors can be modified by polyphenol-rich interventions such as soya, but additional research is needed. This study was designed to investigate the effects of an isoflavone-containing soya protein isolate (delivering 25 and 50 g/d soya protein) on HDL function (i.e. ex vivo cholesterol efflux), macrovascular function and blood markers of CVD risk. Middle-aged adults (n 20; mean age=51·6 (sem 6·6) years) with moderately elevated brachial BP (mean systolic BP=129 (sem 9) mmHg; mean diastolic BP=82·5 (sem 8·4) mmHg) consumed 0 (control), 25 and 50 g/d soya protein in a randomised cross-over design. Soya and control powders were consumed for 6 weeks each with a 2-week compliance break between treatment periods. Blood samples and vascular function measures were obtained at baseline and following each supplementation period. Supplementation with 50 g/d soya protein significantly reduced brachial diastolic BP (-2·3 mmHg) compared with 25 g/d soya protein (Tukey-adjusted P=0·03) but not the control. Soya supplementation did not improve ex vivo cholesterol efflux, macrovascular function or other blood markers of CVD risk compared with the carbohydrate-matched control. Additional research is needed to clarify whether effects on these CVD risk factors depend on the relative health of participants and/or equol producing capacity.
Lab Animal | 2015
Dustie N. Butteiger; Elaine S. Krul
Custom diets are a convenient vector for oral administration of test articles, but the processing and physical form of a diet can affect its nutritional properties and how it is consumed. Here, the authors evaluated the feeding behavior and physiology of golden Syrian hamsters fed diets of either soy or caseinate protein in pelleted or powdered forms for 28 d to determine whether dietary processing and form mediates the physiological effects of dietary proteins. The authors compared body weight, food consumption, serum cholesterol concentration, serum triglyceride concentration, fecal weight and fecal excretion of bile acids between treatment groups. Hamsters fed powdered diets showed higher food consumption than hamsters fed pelleted diets, regardless of protein source. Hamsters fed soy pelleted diets showed lower serum cholesterol concentration and higher fecal excretion of bile acid than hamsters fed caseinate pelleted diets, and serum cholesterol concentration correlated strongly with fecal excretion of bile acid. This correlation suggests that the physiological effects of soy protein on cholesterol and excretion of bile acid might be related or similarly mediated through diet. The differences observed between hamsters on different diets indicate that dietary form can influence both feeding behavior and the physiological effects of a diet in hamsters.
PLOS ONE | 2017
Ramzi J. Khairallah; Karen M. O’Shea; Christopher W. Ward; Dustie N. Butteiger; Ratna Mukherjea; Elaine S. Krul
Athletes as well as elderly or hospitalized patients use dietary protein supplementation to maintain or grow skeletal muscle. It is recognized that high quality protein is needed for muscle accretion, and can be obtained from both animal and plant-based sources. There is interest to understand whether these sources differ in their ability to maintain or stimulate muscle growth and function. In this study, baseline muscle performance was assessed in 50 adult Sprague-Dawley rats after which they were assigned to one of five semi-purified “Western” diets (n = 10/group) differing only in protein source, namely 19 kcal% protein from either milk protein isolate (MPI), whey protein isolate (WPI), soy protein isolate (SPI), soy protein concentrate (SPC) or enzyme-treated soy protein (SPE). The diets were fed for 8 weeks at which point muscle performance testing was repeated and tissues were collected for analysis. There was no significant difference in food consumption or body weights over time between the diet groups nor were there differences in terminal organ and muscle weights or in serum lipids, creatinine or myostatin. Compared with MPI-fed rats, rats fed WPI and SPC displayed a greater maximum rate of contraction using the in vivo measure of muscle performance (p<0.05) with increases ranging from 13.3–27.5% and 22.8–29.5%, respectively at 60, 80, 100 and 150 Hz. When the maximum force was normalized to body weight, SPC-fed rats displayed increased force compared to MPI (p<0.05), whereas when normalized to gastrocnemius weight, WPI-fed rats displayed increased force compared to MPI (p<0.05). There was no difference between groups using in situ muscle performance. In conclusion, soy protein consumption, in high-fat diet, resulted in muscle function comparable to whey protein and improved compared to milk protein. The benefits seen with soy or whey protein were independent of changes in muscle mass or fiber cross-sectional area.
Journal of Agricultural and Food Chemistry | 2017
David Roeseler; Nancy McGraw; Dustie N. Butteiger; Naina Shah; Janine Hall-Porter; Ratna Mukherjea; Elaine S. Krul
Dietary protein stimulates muscle protein synthesis and is essential for muscle health. We developed a screening assay using C2C12 mouse muscle cells to assess the relative abilities of diverse commercial protein sources and experimental soy protein hydrolysates (ESH), after simulated gut digestion (SGD), to activate the mechanistic target of rapamycin complex I (mTORC1) muscle protein synthesis signaling pathway (p70S6K(Thr389) phosphorylation). Activation of mTORC1 was expressed as a percentage of a maximal insulin response. The bioactivities of proteins grouped by source including fish (81.3 ± 10.6%), soy (66.2 ± 4.7%), dairy (61.8 ± 4.3%), beef (53.7 ± 8.6%), egg (52.3 ± 10.6%), soy whey (43.4 ± 8.6%), and pea (31.4 ± 10.6%) were not significantly different from each other. Bioactivity for ESH ranged from 28.0 ± 7.5 to 98.2 ± 6.6%. The results indicate that both the protein source and processing conditions are key determinants for mTORC1 activation. Regression analyses demonstrated that neither leucine nor total branched-chain amino acid content of proteins is the sole predictor of mTORC1 activity and that additional factors are necessary.