Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elaine Y. Hsiao is active.

Publication


Featured researches published by Elaine Y. Hsiao.


Nature Neuroscience | 2017

Interactions between the microbiota, immune and nervous systems in health and disease.

Thomas C Fung; Christine A Olson; Elaine Y. Hsiao

The diverse collection of microorganisms that inhabit the gastrointestinal tract, collectively called the gut microbiota, profoundly influences many aspects of host physiology, including nutrient metabolism, resistance to infection and immune system development. Studies investigating the gut–brain axis demonstrate a critical role for the gut microbiota in orchestrating brain development and behavior, and the immune system is emerging as an important regulator of these interactions. Intestinal microbes modulate the maturation and function of tissue-resident immune cells in the CNS. Microbes also influence the activation of peripheral immune cells, which regulate responses to neuroinflammation, brain injury, autoimmunity and neurogenesis. Accordingly, both the gut microbiota and immune system are implicated in the etiopathogenesis or manifestation of neurodevelopmental, psychiatric and neurodegenerative diseases, such as autism spectrum disorder, depression and Alzheimers disease. In this review, we discuss the role of CNS-resident and peripheral immune pathways in microbiota–gut–brain communication during health and neurological disease.


Biological Psychiatry | 2017

Emerging Roles for the Gut Microbiome in Autism Spectrum Disorder

Helen E. Vuong; Elaine Y. Hsiao

Autism spectrum disorder (ASD) is a serious neurodevelopmental disorder that affects one in 45 children in the United States, with a similarly striking prevalence in countries around the world. However, mechanisms underlying its etiology and manifestations remain poorly understood. Although ASD is diagnosed based on the presence and severity of impaired social communication and repetitive behavior, immune dysregulation and gastrointestinal issues are common comorbidities. The microbiome is an integral part of human physiology; recent studies show that changes in the gut microbiota can modulate gastrointestinal physiology, immune function, and even behavior. Links between particular bacteria from the indigenous gut microbiota and phenotypes relevant to ASD raise the important question of whether microbial dysbiosis plays a role in the development or presentation of ASD symptoms. Here we review reports of microbial dysbiosis in ASD. We further discuss potential effects of the microbiota on ASD-associated symptoms, drawing on signaling mechanisms for reciprocal interactions among the microbiota, immunity, gut function, and behavior. In addition, we discuss recent findings supporting a role for the microbiome as an interface between environmental and genetic risk factors that are associated with ASD. These studies highlight the integration of pathways across multiple body systems that together can impact brain and behavior and suggest that changes in the microbiome may contribute to symptoms of neurodevelopmental disease.


Annual Review of Neuroscience | 2017

The Microbiome and Host Behavior

Helen E. Vuong; Jessica Yano; Thomas C. Fung; Elaine Y. Hsiao

The microbiota is increasingly recognized for its ability to influence the development and function of the nervous system and several complex host behaviors. In this review, we discuss emerging roles for the gut microbiota in modulating host social and communicative behavior, stressor-induced behavior, and performance in learning and memory tasks. We summarize effects of the microbiota on host neurophysiology, including brain microstructure, gene expression, and neurochemical metabolism across regions of the amygdala, hippocampus, frontal cortex, and hypothalamus. We further assess evidence linking dysbiosis of the gut microbiota to neurobehavioral diseases, such as autism spectrum disorder and major depression, drawing upon findings from animal models and human trials. Finally, based on increasing associations between the microbiota, neurophysiology, and behavior, we consider whether investigating mechanisms underlying the microbiota-gut-brain axis could lead to novel approaches for treating particular neurological conditions.


Mbio | 2017

Differences in gut microbial composition correlate with regional brain volumes in irritable bowel syndrome

Jennifer S. Labus; Emily B. Hollister; Jonathan P. Jacobs; Kyleigh Kirbach; Numan Oezguen; Arpana Gupta; Jonathan R. Acosta; Ruth Ann Luna; Kjersti Aagaard; James Versalovic; Tor C. Savidge; Elaine Y. Hsiao; Kirsten Tillisch; Emeran A. Mayer

BackgroundPreclinical and clinical evidence supports the concept of bidirectional brain-gut microbiome interactions. We aimed to determine if subgroups of irritable bowel syndrome (IBS) subjects can be identified based on differences in gut microbial composition, and if there are correlations between gut microbial measures and structural brain signatures in IBS.MethodsBehavioral measures, stool samples, and structural brain images were collected from 29 adult IBS and 23 healthy control subjects (HCs). 16S ribosomal RNA (rRNA) gene sequencing was used to profile stool microbial communities, and various multivariate analysis approaches were used to quantitate microbial composition, abundance, and diversity. The metagenomic content of samples was inferred from 16S rRNA gene sequence data using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). T1-weighted brain images were acquired on a Siemens Allegra 3T scanner, and morphological measures were computed for 165 brain regions.ResultsUsing unweighted Unifrac distances with hierarchical clustering on microbial data, samples were clustered into two IBS subgroups within the IBS population (IBS1 (n = 13) and HC-like IBS (n = 16)) and HCs (n = 23) (AUROC = 0.96, sensitivity 0.95, specificity 0.67). A Random Forest classifier provided further support for the differentiation of IBS1 and HC groups. Microbes belonging to the genera Faecalibacterium, Blautia, and Bacteroides contributed to this subclassification. Clinical features distinguishing the groups included a history of early life trauma and duration of symptoms (greater in IBS1), but not self-reported bowel habits, anxiety, depression, or medication use. Gut microbial composition correlated with structural measures of brain regions including sensory- and salience-related regions, and with a history of early life trauma.ConclusionsThe results confirm previous reports of gut microbiome-based IBS subgroups and identify for the first time brain structural alterations associated with these subgroups. They provide preliminary evidence for the involvement of specific microbes and their predicted metabolites in these correlations.


Psychosomatic Medicine | 2017

The Gut and Its Microbiome as Related to Central Nervous System Functioning and Psychological Well-being: Introduction to the Special Issue of Psychosomatic Medicine

Emeran A. Mayer; Elaine Y. Hsiao

Accumulating evidence indicates bidirectional associations between the brain and the gut microbiome with both top-down and bottom-up processes. This article describes new developments in brain-gut interactions as an introduction to a special issue of Psychosomatic Medicine, based on a joint symposium of the American Psychosomatic Society and the American Gastroenterological Association. Literature review articles indicate that several psychiatric disorders are associated with altered gut microbiota, whereas evidence linking functional gastrointestinal disorders and dysbiosis has not been firmly established. The association between dysbiosis with obesity, metabolic syndrome, and Type 2 diabetes mellitus is still inconclusive, but evidence suggests that bariatric surgery may favorably alter the gut microbial community structure. Consistent with the literature linking psychiatric disorders with dysbiosis is that life adversity during childhood and certain temperaments that develop early in life are associated with altered gut microbiota, particularly the Prevotella species. Some studies reported in this issue support the hypothesis that brain-gut interactions are adversely influenced by reduced functional activation of the hippocampus and autonomic nervous system dysregulation. The evidence for the effects of probiotics in the treatment of Clostridium difficile colitis is relatively well established, but effects on mental health and psychophysiological stress reactivity are either inconclusive or still in progress. To conceptualize brain-gut interactions, a holistic, systems-based perspective on health and disease is needed, integrating gut microbial with environmental ecology. More translational research is needed to examine the mental and physical health effects of prebiotics and probiotics, in well-phenotyped human populations with sufficiently large sample sizes.


Nature microbiology | 2016

The Microbial Olympics 2016

Michaeline B. Nelson; Alexander B. Chase; Jennifer B. H. Martiny; Roman Stocker; Jen Nguyen; Karen Lloyd; Reid T. Oshiro; Daniel B. Kearns; Johannes P. Schneider; Peter Ringel; Marek Basler; Christine Olson; Helen E. Vuong; Elaine Y. Hsiao; Benjamin R.K. Roller; Martin Ackermann; Chris S. Smillie; Diana Chien; Eric J. Alm; Andrew J. Jermy

Following the success of the inaugural games, the Microbial Olympics return with a new series of events and microbial competitors. The games may have moved to a new hosting venue, but the dedication to training, fitness, competition (and yes, education and humour) lives on.


Neuropsychopharmacology | 2018

Maternal immune activation: reporting guidelines to improve the rigor, reproducibility, and transparency of the model

Amanda C. Kentner; Staci D. Bilbo; Alan S. Brown; Elaine Y. Hsiao; A. Kimberley McAllister; Urs Meyer; Brad D. Pearce; Mikhail V. Pletnikov; Solomon H. Snyder; Robert H. Yolken; Melissa D. Bauman

The 2017 American College of Neuropychopharmacology (ACNP) conference hosted a Study Group on 4 December 2017, Establishing best practice guidelines to improve the rigor, reproducibility, and transparency of the maternal immune activation (MIA) animal model of neurodevelopmental abnormalities. The goals of this session were to (a) evaluate the current literature and establish a consensus on best practices to be implemented in MIA studies, (b) identify remaining research gaps warranting additional data collection and lend to the development of evidence-based best practice design, and (c) inform the MIA research community of these findings. During this session, there was a detailed discussion on the importance of validating immunogen doses and standardizing the general design (e.g., species, immunogenic compound used, housing) of our MIA models both within and across laboratories. The consensus of the study group was that data does not currently exist to support specific evidence-based model selection or methodological recommendations due to lack of consistency in reporting, and that this issue extends to other inflammatory models of neurodevelopmental abnormalities. This launched a call to establish a reporting checklist focusing on validation, implementation, and transparency modeled on the ARRIVE Guidelines and CONSORT (scientific reporting guidelines for animal and clinical research, respectively). Here we provide a summary of the discussions in addition to a suggested checklist of reporting guidelines needed to improve the rigor and reproducibility of this valuable translational model, which can be adapted and applied to other animal models as well.


PLOS ONE | 2018

Correlation of tryptophan metabolites with connectivity of extended central reward network in healthy subjects

Vadim Osadchiy; Jennifer S. Labus; Arpana Gupta; Jonathan P. Jacobs; Cody Ashe-McNalley; Elaine Y. Hsiao; Emeran A. Mayer

Objective A growing body of preclinical and clinical literature suggests that brain-gut-microbiota interactions play an important role in human health and disease, including hedonic food intake and obesity. We performed a tripartite network analysis based on graph theory to test the hypothesis that microbiota-derived fecal metabolites are associated with connectivity of key regions of the brain’s extended reward network and clinical measures related to obesity. Methods DTI and resting state fMRI imaging was obtained from 63 healthy subjects with and without elevated body mass index (BMI) (29 males and 34 females). Subjects submitted fecal samples, completed questionnaires to assess anxiety and food addiction, and BMI was recorded. Results The study results demonstrate associations between fecal microbiota-derived indole metabolites (indole, indoleacetic acid, and skatole) with measures of functional and anatomical connectivity of the amygdala, nucleus accumbens, and anterior insula, in addition to BMI, food addiction scores (YFAS) and anxiety symptom scores (HAD Anxiety). Conclusions The findings support the hypothesis that gut microbiota-derived indole metabolites may influence hedonic food intake and obesity by acting on the extended reward network, specifically the amygdala-nucleus accumbens circuit and the amygdala-anterior insula circuit. These cross sectional, data-driven results provide valuable information for future mechanistic studies.


Neuropsychopharmacology | 2018

The gut microbiota mediates reward and sensory responses associated with regimen-selective morphine dependence

Kevin C. Lee; Helen E. Vuong; David J. Nusbaum; Elaine Y. Hsiao; Christopher J. Evans; Anna M. W. Taylor

Opioid use for long-term pain management is limited by adverse side effects, such as hyperalgesia and negative affect. Neuroinflammation in the brain and spinal cord is a contributing factor to the development of symptoms associated with chronic opioid use. Recent studies have described a link between neuroinflammation and behavior that is mediated by a gut–brain signaling axis, where alterations in indigenous gut bacteria contribute to several inflammation-related psychopathologies. As opioid receptors are highly expressed within the digestive tract and opioids influence gut motility, we hypothesized that systemic opioid treatment will impact the composition of the gut microbiota. Here, we explored how opioid treatments, and cessation, impacts the mouse gut microbiome and whether opioid-induced changes in the gut microbiota influences inflammation-driven hyperalgesia and impaired reward behavior. Male C57Bl6/J mice were treated with either intermittent or sustained morphine. Using 16S rDNA sequencing, we describe changes in gut microbiota composition following different morphine regimens. Manipulation of the gut microbiome was used to assess the causal relationship between the gut microbiome and opioid-dependent behaviors. Intermittent, but not sustained, morphine treatment was associated with microglial activation, hyperalgesia, and impaired reward response. Depletion of the gut microbiota via antibiotic treatment surprisingly recapitulated neuroinflammation and sequelae, including reduced opioid analgesic potency and impaired cocaine reward following intermittent morphine treatment. Colonization of antibiotic-treated mice with a control microbiota restored microglial activation state and behaviors. Our findings suggest that differing opioid regimens uniquely influence the gut microbiome that is causally related to behaviors associated with opioid dependence.


Cell | 2018

The Gut Microbiota Mediates the Anti-Seizure Effects of the Ketogenic Diet

Christine Olson; Helen E. Vuong; Jessica Yano; Qingxing Y. Liang; David J. Nusbaum; Elaine Y. Hsiao

Collaboration


Dive into the Elaine Y. Hsiao's collaboration.

Top Co-Authors

Avatar

Helen E. Vuong

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arpana Gupta

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jessica Yano

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge