Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elana J. Fertig is active.

Publication


Featured researches published by Elana J. Fertig.


Journal of Clinical Oncology | 2014

p16 Protein Expression and Human Papillomavirus Status As Prognostic Biomarkers of Nonoropharyngeal Head and Neck Squamous Cell Carcinoma

Christine H. Chung; Qiang Zhang; Christina S. Kong; Jonathan Harris; Elana J. Fertig; Paul M. Harari; Dian Wang; Kevin P. Redmond; G. Shenouda; Andy Trotti; David Raben; Maura L. Gillison; Richard Jordan; Quynh-Thu Le

PURPOSE Although p16 protein expression, a surrogate marker of oncogenic human papillomavirus (HPV) infection, is recognized as a prognostic marker in oropharyngeal squamous cell carcinoma (OPSCC), its prevalence and significance have not been well established in cancer of the oral cavity, hypopharynx, or larynx, collectively referred as non-OPSCC, where HPV infection is less common than in the oropharynx. PATIENTS AND METHODS p16 expression and high-risk HPV status in non-OPSCCs from RTOG 0129, 0234, and 0522 studies were determined by immunohistochemistry (IHC) and in situ hybridization (ISH). Hazard ratios from Cox models were expressed as positive or negative, stratified by trial, and adjusted for clinical characteristics. RESULTS p16 expression was positive in 14.1% (12 of 85), 24.2% (23 of 95), and 19.0% (27 of 142) and HPV ISH was positive in 6.5% (six of 93), 14.6% (15 of 103), and 6.9% (seven of 101) of non-OPSCCs from RTOG 0129, 0234, and 0522 studies, respectively. Hazard ratios for p16 expression were 0.63 (95% CI, 0.42 to 0.95; P = .03) and 0.56 (95% CI, 0.35 to 0.89; P = .01) for progression-free (PFS) and overall survival (OS), respectively. Comparing OPSCC and non-OPSCC, patients with p16-positive OPSCC have better PFS and OS than patients with p16-positive non-OPSCC, but patients with p16-negative OPSCC and non-OPSCC have similar outcomes. CONCLUSION Similar to results in patients with OPSCC, patients with p16-negative non-OPSCC have worse outcomes than patients with p16-positive non-OPSCC, and HPV may also have a role in outcome in a subset of non-OPSCC. However, further development of a p16 IHC scoring system in non-OPSCC and improvement of HPV detection methods are warranted before broad application in the clinical setting.


Nature Methods | 2016

Inferring causal molecular networks: empirical assessment through a community-based effort

Steven M. Hill; Laura M. Heiser; Thomas Cokelaer; Michael Unger; Nicole K. Nesser; Daniel E. Carlin; Yang Zhang; Artem Sokolov; Evan O. Paull; Christopher K. Wong; Kiley Graim; Adrian Bivol; Haizhou Wang; Fan Zhu; Bahman Afsari; Ludmila Danilova; Alexander V. Favorov; Wai Shing Lee; Dane Taylor; Chenyue W. Hu; Byron L. Long; David P. Noren; Alexander J Bisberg; Gordon B. Mills; Joe W. Gray; Michael R. Kellen; Thea Norman; Stephen H. Friend; Amina A. Qutub; Elana J. Fertig

It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective, and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess inferred molecular networks in a causal sense.


Nature Communications | 2015

Targeted sequencing reveals clonal genetic changes in the progression of early lung neoplasms and paired circulating DNA

Evgeny Izumchenko; Xiaofei Chang; Mariana Brait; Elana J. Fertig; Luciane T. Kagohara; Atul Bedi; Luigi Marchionni; Nishant Agrawal; Rajani Ravi; Sian Jones; Mohammad O. Hoque; William H. Westra; David Sidransky

Lungs resected for adenocarcinomas often harbour minute discrete foci of cytologically atypical pneumocyte proliferations designated as atypical adenomatous hyperplasia (AAH). Evidence suggests that AAH represents an initial step in the progression to adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA) and fully invasive adenocarcinoma. Despite efforts to identify predictive markers of malignant transformation, alterations driving this progression are poorly understood. Here we perform targeted next-generation sequencing on multifocal AAHs and different zones of histologic progression within AISs and MIAs. Multiregion sequencing demonstrated different genetic drivers within the same tumour and reveal that clonal expansion is an early event of tumorigenesis. We find that KRAS, TP53 and EGFR mutations are indicators of malignant transition. Utilizing droplet digital PCR, we find alterations associated with early neoplasms in paired circulating DNA. This study provides insight into the heterogeneity of clonal events in the progression of early lung neoplasia and demonstrates that these events can be detected even before neoplasms have invaded and acquired malignant potential.


Oral Oncology | 2013

A phase II study of temsirolimus and erlotinib in patients with recurrent and/or metastatic, platinum-refractory head and neck squamous cell carcinoma

Julie E. Bauman; Hugo Arias-Pulido; Sang-Joon Lee; M. Houman Fekrazad; Hiroyuki Ozawa; Elana J. Fertig; Jason D. Howard; Justin A. Bishop; Hao Wang; Garth T. Olson; Michael Spafford; Dennie Jones; Christine H. Chung

OBJECTIVES The epidermal growth factor receptor (EGFR) is a validated target in head and neck squamous cell carcinoma (HNSCC). In recurrent and/or metastatic (R/M) HNSCC, resistance to anti-EGFR therapy inevitably occurs. Downstream activation of the PI3K/Akt/mTOR pathway is an established resistance mechanism. Concurrent mTOR blockade may improve efficacy of anti-EGFR therapy. MATERIALS AND METHODS Erlotinib 150 mg daily and temsirolimus 15 mg weekly were administered to patients with platinum-refractory R/M HNSCC and ECOG performance status 0-2. The primary endpoint was progression-free survival (PFS). Correlative studies determined PIK3CA and HRAS mutation status; p16, EGFR, pS6K, pAkt and PTEN expression; and pre- and post-treatment plasma levels of 20 immunomodulatory cytokines. RESULTS Twelve patients enrolled; six withdrew within 6 weeks due to toxicity or death, prompting early closure of the trial. Grade ≥ 3 toxicities included fatigue, diarrhea, gastrostomy tube infection, peritonitis, pneumonia, dyspnea, and HN edema. Median PFS was 1.9 months. Median overall survival was 4.0 months. Six/12 tumors were p16(+), 9/11 lacked measurable PTEN expression, and 1/12 harbored a PIK3CA mutation. On exploratory analysis, high baseline plasma VEGF and interferon-gamma levels marginally associated with tumor progression. CONCLUSIONS The combination of erlotinib and temsirolimus was poorly tolerated. Low prevalence of PTEN expression and 8% incidence of PIK3CA mutations indicate biological relevance of this pathway in R/M disease. Investigation of more tolerable combinations of EGFR and PI3K/Akt/mTOR pathway inhibitors in selected HNSCC patients is warranted.


Epigenetics | 2014

Key tumor suppressor genes inactivated by “greater promoter” methylation and somatic mutations in head and neck cancer

Rafael Guerrero-Preston; Christina Michailidi; Luigi Marchionni; Curtis R. Pickering; Mitchell J. Frederick; Jeffrey N. Myers; Srinivasan Yegnasubramanian; Tal Hadar; Maartje G. Noordhuis; Veronika Zizkova; Elana J. Fertig; Nishant Agrawal; William H. Westra; Wayne M. Koch; Joseph A. Califano; Victor E. Velculescu; David Sidransky

Tumor suppressor genes (TSGs) are commonly inactivated by somatic mutation and/or promoter methylation; yet, recent high-throughput genomic studies have not identified key TSGs inactivated by both mechanisms. We pursued an integrated molecular analysis based on methylation binding domain sequencing (MBD-seq), 450K Methylation arrays, whole exome sequencing, and whole genome gene expression arrays in primary head and neck squamous cell carcinoma (HNSCC) tumors and matched uvulopalatopharyngoplasty tissue samples (UPPPs). We uncovered 186 downregulated genes harboring cancer specific promoter methylation including PAX1 and PAX5 and we identified 10 key tumor suppressor genes (GABRB3, HOXC12, PARP15, SLCO4C1, CDKN2A, PAX1, PIK3AP1, HOXC6, PLCB1, and ZIC4) inactivated by both promoter methylation and/or somatic mutation. Among the novel tumor suppressor genes discovered with dual mechanisms of inactivation, we found a high frequency of genomic and epigenomic alterations in the PAX gene family of transcription factors, which selectively impact canonical NOTCH and TP53 pathways to determine cell fate, cell survival, and genome maintenance. Our results highlight the importance of assessing TSGs at the genomic and epigenomic level to identify key pathways in HNSCC, deregulated by simultaneous promoter methylation and somatic mutations.


Molecular Cancer Therapeutics | 2012

Inhibition of TGF-β Enhances the In Vivo Antitumor Efficacy of EGF Receptor–Targeted Therapy

Atul Bedi; Xiaofei Chang; Kimberly Noonan; Vui Pham; Rishi Bedi; Elana J. Fertig; Michael Considine; Joseph A. Califano; Ivan Borrello; Christine H. Chung; David Sidransky; Rajani Ravi

EGF receptor (EGFR)–targeted monoclonal antibodies (mAb), such as cetuximab, execute their antitumor effect in vivo via blockade of receptor–ligand interactions and engagement of Fcγ receptors on immune effector cells that trigger antibody-dependent cell-mediated cytotoxicity (ADCC). We show that tumors counteract the in vivo antitumor activity of anti-EGFR mAbs by increasing tumor cell-autonomous expression of TGF-β. We show that TGF-β suppresses the expression of key molecular effectors of immune cell–mediated cytotoxicity, including Apo2L/TRAIL, CD95L/FasL, granzyme B, and IFN-γ. In addition to exerting an extrinsic inhibition of the cytotoxic function of immune effectors, TGF-β–mediated activation of AKT provides an intrinsic EGFR-independent survival signal that protects tumor cells from immune cell–mediated apoptosis. Treatment of mice-bearing xenografts of human head and neck squamous cell carcinoma with cetuximab resulted in emergence of resistant tumor cells that expressed relatively higher levels of TGF-β compared with untreated tumor-bearing mice. Although treatment with cetuximab alone forced the natural selection of TGF-β–overexpressing tumor cells in nonregressing tumors, combinatorial treatment with cetuximab and a TGF-β–blocking antibody prevented the emergence of such resistant tumor cells and induced complete tumor regression. Therefore, elevated levels of TGF-β in the tumor microenvironment enable tumor cells to evade ADCC and resist the antitumor activity of cetuximab in vivo. Our results show that TGF-β is a key molecular determinant of the de novo and acquired resistance of cancers to EGFR-targeted mAbs, and provide a rationale for combinatorial targeting of TGF-β to improve anti-EGFR–specific antibody therapy of EGFR-expressing cancers. Mol Cancer Ther; 11(11); 2429–39. ©2012 AACR.


Molecular Cancer Research | 2013

The Twist box domain is required for Twist1-induced prostate cancer metastasis

Rajendra P. Gajula; Sivarajan T. Chettiar; Russell Williams; Saravanan Thiyagarajan; Yoshinori Kato; Khaled Aziz; Ruoqi Wang; Nishant Gandhi; Aaron T. Wild; Farhad Vesuna; Jinfang Ma; Tarek Salih; Jessica Cades; Elana J. Fertig; Shyam Biswal; Timothy F. Burns; Christine H. Chung; Charles M. Rudin; Joseph M. Herman; Russell K. Hales; Venu Raman; Steven S. An; Phuoc T. Tran

Twist1, a basic helix-loop-helix transcription factor, plays a key role during development and is a master regulator of the epithelial–mesenchymal transition (EMT) that promotes cancer metastasis. Structure–function relationships of Twist1 to cancer-related phenotypes are underappreciated, so we studied the requirement of the conserved Twist box domain for metastatic phenotypes in prostate cancer. Evidence suggests that Twist1 is overexpressed in clinical specimens and correlated with aggressive/metastatic disease. Therefore, we examined a transactivation mutant, Twist1-F191G, in prostate cancer cells using in vitro assays, which mimic various stages of metastasis. Twist1 overexpression led to elevated cytoskeletal stiffness and cell traction forces at the migratory edge of cells based on biophysical single-cell measurements. Twist1 conferred additional cellular properties associated with cancer cell metastasis including increased migration, invasion, anoikis resistance, and anchorage-independent growth. The Twist box mutant was defective for these Twist1 phenotypes in vitro. Importantly, we observed a high frequency of Twist1-induced metastatic lung tumors and extrathoracic metastases in vivo using the experimental lung metastasis assay. The Twist box was required for prostate cancer cells to colonize metastatic lung lesions and extrathoracic metastases. Comparative genomic profiling revealed transcriptional programs directed by the Twist box that were associated with cancer progression, such as Hoxa9. Mechanistically, Twist1 bound to the Hoxa9 promoter and positively regulated Hoxa9 expression in prostate cancer cells. Finally, Hoxa9 was important for Twist1-induced cellular phenotypes associated with metastasis. These data suggest that the Twist box domain is required for Twist1 transcriptional programs and prostate cancer metastasis. Implications: Targeting the Twist box domain of Twist1 may effectively limit prostate cancer metastatic potential. Mol Cancer Res; 11(11); 1387–400. ©2013 AACR.


Tellus A | 2009

Observation bias correction with an ensemble Kalman filter

Elana J. Fertig; Seung Jong Baek; Brian R. Hunt; Edward Ott; Istvan Szunyogh; José Antonio Aravéquia; Eugenia Kalnay; Hong Li; Junjie Liu

Abstract This paper considers the use of an ensemble Kalman filter to correct satellite radiance observations for state dependent biases. Our approach is to use state-space augmentation to estimate satellite biases as part of the ensemble data assimilation procedure.We illustrate our approach by applying it to a particular ensemble scheme—the local ensemble transform Kalman filter (LETKF)—to assimilate simulated biased atmospheric infrared sounder brightness temperature observations from 15 channels on the simplified parameterizations, primitive-equation dynamics (SPEEDY) model. The scheme we present successfully reduces both the observation bias and analysis error in perfect-model simulations.


Bioinformatics | 2010

CoGAPS: an R/C++ package to identify patterns and biological process activity in transcriptomic data

Elana J. Fertig; Jie Ding; Alexander V. Favorov; Giovanni Parmigiani; Michael F. Ochs

SUMMARY Coordinated Gene Activity in Pattern Sets (CoGAPS) provides an integrated package for isolating gene expression driven by a biological process, enhancing inference of biological processes from transcriptomic data. CoGAPS improves on other enrichment measurement methods by combining a Markov chain Monte Carlo (MCMC) matrix factorization algorithm (GAPS) with a threshold-independent statistic inferring activity on gene sets. The software is provided as open source C++ code built on top of JAGS software with an R interface. AVAILABILITY The R package CoGAPS and the C++ package GAPS-JAGS are provided open source under the GNU Lesser Public License (GLPL) with a users manual containing installation and operating instructions. CoGAPS is available through Bioconductor and depends on the rjags package available through CRAN to interface CoGAPS with GAPS-JAGS. URL: http://www.cancerbiostats.onc.jhmi.edu/cogaps.cfm .


PLOS ONE | 2013

Preferential Activation of the Hedgehog Pathway by Epigenetic Modulations in HPV Negative HNSCC Identified with Meta-Pathway Analysis

Elana J. Fertig; Ana Markovic; Ludmila Danilova; Daria A. Gaykalova; Leslie Cope; Christine H. Chung; Michael F. Ochs; Joseph A. Califano

Head and neck squamous cell carcinoma (HNSCC) is largely divided into two groups based on their etiology, human papillomavirus (HPV)-positive and –negative. Global DNA methylation changes are known to drive oncogene and tumor suppressor expression in primary HNSCC of both types. However, significant heterogeneity in DNA methylation within the groups results in different transcriptional profiles and clinical outcomes. We applied a meta-pathway analysis to link gene expression changes to DNA methylation in distinguishing HNSCC subtypes. This approach isolated specific epigenetic changes controlling expression in HPV− HNSCC that distinguish it from HPV+ HNSCC. Analysis of genes identified Hedgehog pathway activation specific to HPV− HNSCC. We confirmed that GLI1, the primary Hedgehog target, showed higher expression in tumors compared to normal samples with HPV− tumors having the highest GLI1 expression, suggesting that increased expression of GLI1 is a potential driver in HPV− HNSCC. Our algorithm for integration of DNA methylation and gene expression can infer biologically significant molecular pathways that may be exploited as therapeutics targets. Our results suggest that therapeutics targeting the Hedgehog pathway may be of benefit in HPV− HNSCC. Similar integrative analysis of high-throughput coupled DNA methylation and expression datasets may yield novel insights into deregulated pathways in other cancers.

Collaboration


Dive into the Elana J. Fertig's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Theresa Guo

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Justin A. Bishop

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge