Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elayne Hondares is active.

Publication


Featured researches published by Elayne Hondares.


Journal of Biological Chemistry | 2011

Thermogenic Activation Induces FGF21 Expression and Release in Brown Adipose Tissue

Elayne Hondares; Roser Iglesias; Albert Giralt; Frank J. Gonzalez; Marta Giralt; Teresa Mampel; Francesc Villarroya

FGF21 is a novel metabolic regulator involved in the control of glucose homeostasis, insulin sensitivity, and ketogenesis. The liver has been considered the main site of production and release of FGF21 into the blood. Here, we show that, after thermogenic activation, brown adipose tissue becomes a source of systemic FGF21. This is due to a powerful cAMP-mediated pathway of regulation of FGF21 gene transcription. Norepinephrine, acting via β-adrenergic, cAMP-mediated, mechanisms and subsequent activation of protein kinase A and p38 MAPK, induces FGF21 gene transcription and also FGF21 release in brown adipocytes. ATF2 binding to the FGF21 gene promoter mediates cAMP-dependent induction of FGF21 gene transcription. FGF21 release by brown fat in vivo was assessed directly by analyzing arteriovenous differences in FGF21 concentration across interscapular brown fat, in combination with blood flow to brown adipose tissue and assessment of FGF21 half-life. This analysis demonstrates that exposure of rats to cold induced a marked release of FGF21 by brown fat in vivo, in association with a reduction in systemic FGF21 half-life. The present findings lead to the recognition of a novel pathway of regulation the FGF21 gene and an endocrine role of brown fat, as a source of FGF21 that may be especially relevant in conditions of activation of thermogenic activity.


Cell Metabolism | 2010

Hepatic FGF21 Expression Is Induced at Birth via PPARα in Response to Milk Intake and Contributes to Thermogenic Activation of Neonatal Brown Fat

Elayne Hondares; Meritxell Rosell; Frank J. Gonzalez; Marta Giralt; Roser Iglesias; Francesc Villarroya

Plasma FGF21 levels and hepatic FGF21 gene expression increase dramatically after birth in mice. This induction is initiated by suckling, requires lipid intake, is impaired in PPARalpha null neonates, and is mimicked by treatment with the PPARalpha activator, Wy14,643. Neonates exhibit reduced FGF21 expression in response to fasting, in contrast to the upregulation occurring in adults. Changes in FGF21 expression due to suckling or nutritional manipulations were associated with circulating free fatty acid and ketone body levels. We mimicked the FGF21 postnatal rise by injecting FGF21 into fasting neonates, and found that this enhanced the expression of genes involved in thermogenesis within brown fat, and increased body temperature. Brown adipocytes treated with FGF21 exhibited increased expression of thermogenic genes, higher total and uncoupled respiration, and enhanced glucose oxidation. We propose that the induction of FGF21 production by the liver mediates direct activation of brown fat thermogenesis during the fetal-to-neonatal transition.


Journal of Biological Chemistry | 2011

Peroxisome Proliferator-activated Receptor α (PPARα) Induces PPARγ Coactivator 1α (PGC-1α) Gene Expression and Contributes to Thermogenic Activation of Brown Fat INVOLVEMENT OF PRDM16

Elayne Hondares; Meritxell Rosell; Julieta Díaz-Delfín; Yolanda Olmos; María Monsalve; Roser Iglesias; Francesc Villarroya; Marta Giralt

Background: PPARα is a distinctive marker of the brown-versus-white fat phenotype. Results: PPARα induces PGC-1α gene transcription in brown adipocytes through mechanisms involving PRDM16. Conclusion: PPARα regulates brown fat thermogenesis via induction of PGC-1α and PRDM16 gene expression. Significance: Activation of PGC-1α by PPARα provides a molecular mechanism for concerted induction of thermogenic genes (UCP1, mitochondrial genes, and lipid oxidation genes) in brown fat. Peroxisome proliferator activated receptor α (PPARα) is a distinctive marker of the brown fat phenotype that has been proposed to coordinate the transcriptional activation of genes for lipid oxidation and for thermogenic uncoupling protein 1 in brown adipose tissue. Here, we investigated the involvement of PPARα in the transcriptional control of the PPARγ coactivator (PGC)-1α gene. Treatment with PPARα agonists induced PGC-1α mRNA expression in brown fat in vivo and in primary brown adipocytes. This enhancement of PGC-1α transcription was mediated by PPARα binding to a PPAR-responsive element in the distal PGC-1α gene promoter. PGC-1α gene expression was decreased in PPARα-null brown fat, both under basal conditions and in response to thermogenic activation. Moreover, PPARα- and cAMP-mediated pathways interacted to control PGC-1α transcription. PRDM16 (PRD1-BF1-RIZ1 homologous domain-containing 16) promoted PPARα induction of PGC-1α gene transcription, especially under conditions in which protein kinase A pathways were activated. This enhancement was associated with the interaction of PRDM16 with the PGC-1α promoter at the PPARα-binding site. In addition, PPARα promoted the expression of the PRDM16 gene in brown adipocytes, and activation of PPARα in human white adipocytes led to the appearance of a brown adipocyte pattern of gene expression, including induction of PGC-1α and PRDM16. Collectively, these results suggest that PPARα acts as a key component of brown fat thermogenesis by coordinately regulating lipid catabolism and thermogenic gene expression via induction of PGC-1α and PRDM16.


Journal of Biological Chemistry | 2011

Peroxisome Proliferator-activated Receptor-γ Coactivator-1α Controls Transcription of the Sirt3 Gene, an Essential Component of the Thermogenic Brown Adipocyte Phenotype

Albert Giralt; Elayne Hondares; Josep A. Villena; Francesc Ribas; Julieta Díaz-Delfín; Marta Giralt; Roser Iglesias; Francesc Villarroya

Sirt3 (silent mating type information regulation 2, homolog 3), a member of the sirtuin family of protein deacetylases with multiple actions on metabolism and gene expression is expressed in association with brown adipocyte differentiation. Using Sirt3-null brown adipocytes, we determined that Sirt3 is required for an appropriate responsiveness of cells to noradrenergic, cAMP-mediated activation of the expression of brown adipose tissue thermogenic genes. The transcriptional coactivator Pgc-1α (peroxisome proliferator-activated receptor-γ coactivator-1α) induced Sirt3 gene expression in white adipocytes and embryonic fibroblasts as part of its overall induction of a brown adipose tissue-specific pattern of gene expression. In cells lacking Sirt3, Pgc-1α failed to fully induce the expression of brown fat-specific thermogenic genes. Pgc-1α activates Sirt3 gene transcription through coactivation of the orphan nuclear receptor Err (estrogen-related receptor)-α, which bound the proximal Sirt3 gene promoter region. Errα knockdown assays indicated that Errα is required for full induction of Sirt3 gene expression in response to Pgc-1α. The present results indicate that Pgc-1α controls Sirt3 gene expression and this action is an essential component of the overall mechanisms by which Pgc-1α induces the full acquisition of a brown adipocyte differentiated phenotype.


Endocrinology | 2012

TNF-α Represses β-Klotho Expression and Impairs FGF21 Action in Adipose Cells: Involvement of JNK1 in the FGF21 Pathway

Julieta Díaz-Delfín; Elayne Hondares; Roser Iglesias; Marta Giralt; Carme Caelles; Francesc Villarroya

Fibroblast growth factor 21 (FGF21) is a member of the FGF family that reduces glycemia and ameliorates insulin resistance. Adipose tissue is a main target of FGF21 action. Obesity is associated with a chronic proinflammatory state. Here, we analyzed the role of proinflammatory signals in the FGF21 pathway in adipocytes, evaluating the effects of TNF-α on β-Klotho and FGF receptor-1 expression and FGF21 action in adipocytes. We also determined the effects of rosiglitazone on β-Klotho and FGF receptor-1 expression in models of proinflammatory signal induction in vitro and in vivo (high-fat diet-induced obesity). Because c-Jun NH(2)-terminal kinase 1 (JNK1) serves as a sensing juncture for inflammatory status, we also evaluated the involvement of JNK1 in the FGF21 pathway. TNF-α repressed β-Klotho expression and impaired FGF21 action in adipocytes. Rosiglitazone prevented the reduction in β-Klotho expression elicited by TNF-α. Moreover, β-Klotho levels were reduced in adipose tissue from high-fat diet-induced obese mice, whereas rosiglitazone restored β-Klotho to near-normal levels. β-Klotho expression was increased in white fat from JNK1(-/-) mice. The absence of JNK1 increased the responsiveness of mouse embryonic fibroblast-derived adipocytes and brown adipocytes to FGF21. In conclusion, we show that proinflammatory signaling impairs β-Klotho expression and FGF21 responsiveness in adipocytes. We also show that JNK1 activity is involved in modulating FGF21 effects in adipocytes. The impairment in the FGF21 response machinery in adipocytes and the reduction in FGF21 action in response to proinflammatory signals may play important roles in metabolic alterations in obesity and other diseases associated with enhanced inflammation.


Journal of Lipid Research | 2013

FGF21 mediates the lipid metabolism response to amino acid starvation

Ana Luísa De Sousa-Coelho; Joana Relat; Elayne Hondares; Albert Pérez-Martí; Francesc Ribas; Francesc Villarroya; Pedro F. Marrero; Diego Haro

Lipogenic gene expression in liver is repressed in mice upon leucine deprivation. The hormone fibroblast growth factor 21 (FGF21), which is critical to the adaptive metabolic response to starvation, is also induced under amino acid deprivation. Upon leucine deprivation, we found that FGF21 is needed to repress expression of lipogenic genes in liver and white adipose tissue, and stimulate phosphorylation of hormone-sensitive lipase in white adipose tissue. The increased expression of Ucp1 in brown adipose tissue under these circumstances is also impaired in FGF21-deficient mice. Our results demonstrate the important role of FGF21 in the regulation of lipid metabolism during amino acid starvation.


Biochemical Journal | 2005

Defective thermoregulation, impaired lipid metabolism, but preserved adrenergic induction of gene expression in brown fat of mice lacking C/EBPβ

M.Carmen Carmona; Elayne Hondares; M. Luisa Rodríguez De La Concepción; Víctor Rodríguez-Sureda; Julia Peinado-Onsurbe; Valeria Poli; Roser Iglesias; Francesc Villarroya; Marta Giralt

C/EBPbeta (CCAAT/enhancer-binding protein beta) is a transcriptional regulator of the UCP1 (uncoupling protein-1) gene, the specific marker gene of brown adipocytes that is responsible for their thermogenic capacity. To investigate the role of C/EBPbeta in brown fat, we studied the C/EBPbeta-null mice. When placed in the cold, C/EBPbeta(-/-) mice did not maintain body temperature. This cold-sensitive phenotype occurred, although UCP1 and PGC-1alpha (peroxisome-proliferator-activated receptor gamma co-activator-1alpha) gene expression was unaltered in brown fat of C/EBPbeta(-/-) mice. The UCP1 gene promoter was repressed by the truncated inhibitory C/EBPbeta isoform LIP (liver-enriched transcriptional inhibitory protein, the truncated inhibitory C/EBPbeta isoform). Since C/EBPbeta-null mice lack both C/EBPbeta isoforms, active LAP (liver-enriched transcriptional activatory protein, the active C/EBPbeta isoform) and LIP, the absence of LIP may have a stronger effect than the absence of LAP upon UCP1 gene expression. Gene expression for UCP2 and UCP3 was not impaired in all tissues analysed. In primary brown adipocytes from C/EBPbeta(-/-) mice, induction of gene expression by noradrenaline was preserved. In contrast, the expression of genes related to lipid storage was impaired, as was the amount of triacylglycerol mobilized after acute cold exposure in brown fat from C/EBPbeta(-/-) mice. LPL (lipoprotein lipase) activity was also impaired in brown fat, but not in other tissues of C/EBPbeta(-/-) mice. LPL protein levels were also diminished, but this effect was independent of changes in LPL mRNA, suggesting that C/EBPbeta is involved in the post-transcriptional regulation of LPL gene expression in brown fat. In summary, defective thermoregulation owing to the lack of C/EBPbeta is associated with the reduced capacity to supply fatty acids as fuels to sustain brown fat thermogenesis.


Metabolism-clinical and Experimental | 2014

Fibroblast growth factor-21 is expressed in neonatal and pheochromocytoma-induced adult human brown adipose tissue.

Elayne Hondares; José M. Gallego-Escuredo; Pavel Flachs; Andrea Frontini; Rubén Cereijo; Alberto Goday; Jessica Perugini; Pavel Kopecky; Marta Giralt; Saverio Cinti; Jan Kopecky; Francesc Villarroya

OBJECTIVE In rodents, brown (BAT) and white (WAT) adipose tissues are targets and expression sites for fibroblast growth factor-21 (FGF21). In contrast, human WAT expresses negligible levels of FGF21. We examined FGF21 expression in human BAT samples, including the induced BAT found in adult patients with pheochromocytoma, and interscapular and visceral BAT from newborns. METHODS The expression of FGF21 and uncoupling protein-1 (UCP1, a brown adipocyte marker), was determined by quantitative real-time-PCR and immunoblotting. The transcript levels of marker genes for developmentally-programmed BAT (zinc-finger-protein of the cerebellum-1, ZIC1) and inducible-BAT (cluster of differentiation-137, CD137) were also determined. RESULTS FGF21 and UCP1 are significantly expressed in visceral adipose tissue from pheochromocytoma patients, but not in visceral fat from healthy individuals. In neonates, FGF21 and UCP1 are both expressed in visceral and interscapular fat, and their expression levels show a significant positive correlation. Marker gene expression profiles suggest that inducible BAT is present in visceral fat from pheochromocytoma patients and neonates, whereas developmentally-programmed BAT is present in neonatal interscapular fat. CONCLUSIONS Human BAT, but not WAT, expresses FGF21. The expression of FGF21 is especially high in inducible, also called beige/brite, neonatal BAT, but it is also found in the interscapular, developmentally-programmed, BAT of neonates.


Biochemical Journal | 2014

FGF21 expression and release in muscle cells: involvement of MyoD and regulation by mitochondria-driven signalling

Francesc Ribas; Joan Villarroya; Elayne Hondares; Marta Giralt; Francesc Villarroya

Although the liver is generally considered the main site of production of FGF21 (fibroblast growth factor-21), high FGF21 levels have been found to be associated with neuromuscular mitochondrial genetic diseases, and there are indications that the muscle may be a relevant site of FGF21 production under conditions of muscular mitochondrial stress. In the present study, we found that expression and release of FGF21 was associated with myogenic differentiation, and we identified MyoD as a major controller of FGF21 gene transcription. Mimicking mitochondrial dysfunction using respiratory chain/oxidative phosphorylation inhibitors resulted in enhanced expression and release of FGF21 by muscle cells. The increased production of reactive oxygen species, subsequent induction of p38 MAPK (mitogen-activated protein kinase) and activation of an ATF2 (activating transcription factor 2)-binding site at the proximal promoter region of the FGF21 gene was found to be a major mechanism linking mitochondrial dysfunction with enhanced FGF21 gene transcription in myogenic cells. The myogenic factor MyoD was required for the induction of FGF21 gene transcription by mitochondrial dysfunction, thus explaining the preferential response of muscle cells to mitochondrial dysfunction-induced FGF21 expression and secretion. FGF21 release by muscle cells in response to mitochondrial alterations may represent a physiological mechanism by which the sensing of internal energetic status by muscles results in the release of FGF21 to favour systemic metabolic adaptations.


FEBS Letters | 2007

Overexpression of mitochondrial uncoupling protein-3 does not decrease production of the reactive oxygen species, elevated by palmitate in skeletal muscle cells

Carine Duval; Yolanda Cámara; Elayne Hondares; Brigitte Sibille; Francesc Villarroya

Fatty acids induced an increase in reactive oxygen species (ROS) and enhanced NF‐κB activation in L6 myotubes differentiated in culture. Palmitate proved more effective than oleate in eliciting these effects. The induction of uncoupling protein‐3 (UCP3) at levels similar to those occurring in vivo, attained through the use of an adenoviral vector, led to a reduction of mitochondrial membrane potential in L6 myotubes. However, the capacity of palmitate to increase ROS was not reduced but, quite the opposite, it was moderately enhanced due to the presence of UCP3. The presence of UCP3 in mitochondria did not modify the expression of genes encoding ROS‐related enzymes, either in basal conditions or in the presence of palmitate. However, in the presence of UCP3, UCP2 mRNA expression was down‐regulated in response to palmitate. We conclude that UCP3 does not act as a protective agent against palmitate‐dependent induction of ROS production in differentiated skeletal muscle cells.

Collaboration


Dive into the Elayne Hondares's collaboration.

Top Co-Authors

Avatar

Francesc Villarroya

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Marta Giralt

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank J. Gonzalez

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pilar Yubero

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge