Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eldor A. Paul is active.

Publication


Featured researches published by Eldor A. Paul.


Plant and Soil | 2002

Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils

Johan Six; Richard T. Conant; Eldor A. Paul; Keith Paustian

The relationship between soil structure and the ability of soil to stabilize soil organic matter (SOM) is a key element in soil C dynamics that has either been overlooked or treated in a cursory fashion when developing SOM models. The purpose of this paper is to review current knowledge of SOM dynamics within the framework of a newly proposed soil C saturation concept. Initially, we distinguish SOM that is protected against decomposition by various mechanisms from that which is not protected from decomposition. Methods of quantification and characteristics of three SOM pools defined as protected are discussed. Soil organic matter can be: (1) physically stabilized, or protected from decomposition, through microaggregation, or (2) intimate association with silt and clay particles, and (3) can be biochemically stabilized through the formation of recalcitrant SOM compounds. In addition to behavior of each SOM pool, we discuss implications of changes in land management on processes by which SOM compounds undergo protection and release. The characteristics and responses to changes in land use or land management are described for the light fraction (LF) and particulate organic matter (POM). We defined the LF and POM not occluded within microaggregates (53–250 μm sized aggregates as unprotected. Our conclusions are illustrated in a new conceptual SOM model that differs from most SOM models in that the model state variables are measurable SOM pools. We suggest that physicochemical characteristics inherent to soils define the maximum protective capacity of these pools, which limits increases in SOM (i.e. C sequestration) with increased organic residue inputs.


Global Change Biology | 2013

The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?

M. Francesca Cotrufo; Matthew D. Wallenstein; Claudia M. Boot; Karolien Denef; Eldor A. Paul

The decomposition and transformation of above- and below-ground plant detritus (litter) is the main process by which soil organic matter (SOM) is formed. Yet, research on litter decay and SOM formation has been largely uncoupled, failing to provide an effective nexus between these two fundamental processes for carbon (C) and nitrogen (N) cycling and storage. We present the current understanding of the importance of microbial substrate use efficiency and C and N allocation in controlling the proportion of plant-derived C and N that is incorporated into SOM, and of soil matrix interactions in controlling SOM stabilization. We synthesize this understanding into the Microbial Efficiency-Matrix Stabilization (MEMS) framework. This framework leads to the hypothesis that labile plant constituents are the dominant source of microbial products, relative to input rates, because they are utilized more efficiently by microbes. These microbial products of decomposition would thus become the main precursors of stable SOM by promoting aggregation and through strong chemical bonding to the mineral soil matrix.


Applied and Environmental Microbiology | 2003

Terminal Restriction Fragment Length Polymorphism Data Analysis for Quantitative Comparison of Microbial Communities

Christopher B. Blackwood; Terry L. Marsh; Sang-Hoon Kim; Eldor A. Paul

ABSTRACT Terminal restriction fragment length polymorphism (T-RFLP) is a culture-independent method of obtaining a genetic fingerprint of the composition of a microbial community. Comparisons of the utility of different methods of (i) including peaks, (ii) computing the difference (or distance) between profiles, and (iii) performing statistical analysis were made by using replicated profiles of eubacterial communities. These samples included soil collected from three regions of the United States, soil fractions derived from three agronomic field treatments, soil samples taken from within one meter of each other in an alfalfa field, and replicate laboratory bioreactors. Cluster analysis by Wards method and by the unweighted-pair group method using arithmetic averages (UPGMA) were compared. Wards method was more effective at differentiating major groups within sets of profiles; UPGMA had a slightly reduced error rate in clustering of replicate profiles and was more sensitive to outliers. Most replicate profiles were clustered together when relative peak height or Hellinger-transformed peak height was used, in contrast to raw peak height. Redundancy analysis was more effective than cluster analysis at detecting differences between similar samples. Redundancy analysis using Hellinger distance was more sensitive than that using Euclidean distance between relative peak height profiles. Analysis of Jaccard distance between profiles, which considers only the presence or absence of a terminal restriction fragment, was the most sensitive in redundancy analysis, and was equally sensitive in cluster analysis, if all profiles had cumulative peak heights greater than 10,000 fluorescence units. It is concluded that T-RFLP is a sensitive method of differentiating between microbial communities when the optimal statistical method is used for the situation at hand. It is recommended that hypothesis testing be performed by redundancy analysis of Hellinger-transformed data and that exploratory data analysis be performed by cluster analysis using Wards method to find natural groups or by UPGMA to identify potential outliers. Analyses can also be based on Jaccard distance if all profiles have cumulative peak heights greater than 10,000 fluorescence units.


Climatic Change | 2003

U.S. agriculture and climate change: New results

John M. Reilly; Francesco N. Tubiello; Bruce A. McCarl; David G. Abler; Roy Darwin; K. Fuglie; S. Hollinger; C. Izaurralde; Shrikant Jagtap; James W. Jones; Linda O. Mearns; Dennis Ojima; Eldor A. Paul; Keith Paustian; Susan J. Riha; Norman J. Rosenberg; Cynthia Rosenzweig

We examined the impacts on U.S. agriculture of transient climate change assimulated by 2 global general circulation models focusing on the decades ofthe 2030s and 2090s. We examined historical shifts in the location of cropsand trends in the variability of U.S. average crop yields, finding thatnon-climatic forces have likely dominated the north and westward movement ofcrops and the trends in yield variability. For the simulated future climateswe considered impacts on crops, grazing and pasture, livestock, pesticide use,irrigation water supply and demand, and the sensitivity to international tradeassumptions, finding that the aggregate of these effects were positive for theU.S. consumer but negative, due to declining crop prices, for producers. Weexamined the effects of potential changes in El Niño/SouthernOscillation (ENSO) and impacts on yield variability of changes in mean climateconditions. Increased losses occurred with ENSO intensity and frequencyincreases that could not be completely offset even if the events could beperfectly forecasted. Effects on yield variability of changes in meantemperatures were mixed. We also considered case study interactions ofclimate, agriculture, and the environment focusing on climate effects onnutrient loading to the Chesapeake Bay and groundwater depletion of theEdwards Aquifer that provides water for municipalities and agriculture to theSan Antonio, Texas area. While only case studies, these results suggestenvironmental targets such as pumping limits and changes in farm practices tolimit nutrient run-off would need to be tightened if current environmentalgoals were to be achieved under the climate scenarios we examined


Ecological Applications | 1997

SOIL RESOURCES, MICROBIAL ACTIVITY, AND PRIMARY PRODUCTION ACROSS AN AGRICULTURAL ECOSYSTEM

G. Philip Robertson; Katherine M. Klingensmith; Michael J. Klug; Eldor A. Paul; James R. Crum; Boyd G. Ellis

The degree to which soil resource availability is linked to patterns of microbial activity and plant productivity within ecosystems has important consequences for our understanding of how ecosystems are structured and for the management of systems for agricultural production. We studied this linkage in a 48-ha site in southwest Michigan, USA, that had been cultivated and planted to row crops for decades. Prior to seeding the site to genetically identical soybean plants (Glycine max) in early spring, we removed soil samples from ≈600 locations; plant biomass was harvested from these same locations later in the season. Soil samples were analyzed for physical properties (texture, bulk density), chemical properties (moisture, pH, total C, total N, inorganic N), and biological attributes (microbial biomass, microbial population size, respiration potential, and nitrification and N-mineralization potentials). Plant analyses included biomass and C and N contents. Soil resource variability across this long-cultiva...


Soil Biology & Biochemistry | 2000

Soil carbon pools and fluxes in long-term corn belt agroecosystems

H.P. Collins; Edward T. Elliott; Keith Paustian; Larry G. Bundy; Warren A. Dick; David R. Huggins; A. J. M. Smucker; Eldor A. Paul

The dynamics of soil organic carbon (SOC) play an important role in long-term ecosystem productivity and the global C cycle. We used extended laboratory incubation and acid hydrolysis to analytically determine SOC pool sizes and fluxes in US Corn Belt soils derived from both forest and prairie vegetation. Measurement of the natural abundance of 13 C made it possible to follow the influence of continuous corn on SOC accumulation. The active pools (Ca) comprised 3 to 8% of the SOC with an average field mean residence time (MRT) of 100 d. The slow pools (Cs) comprised 50% of SOC in the surface and up to 65% in subsoils. They had field MRTs from 12‐28 y for C4-C and 40‐80 y for C3-derived C depending on soil type and location. Notill management increased the MRT of the C3-C by 10‐15 y above conventional tillage. The resistant pool (Cr) decreased from an average of 50% at the surface to 30% at depth. The isotopic composition of SOC mineralized during the early stages of incubation reflected accumulations of labile C from the incorporation of corn residues. The CO2 released later reflected 13 C characteristic of the Cs pool. The 13 C of the CO2 did not equal that of the whole soil until after 1000 d of incubation. The SOC dynamics determined by acid hydrolysis, incubation and 13 C content were dependent on soil heritage (prairie vs. forest), texture, cultivation and parent material, depositional characteristics. Two independent methods of determining C3 pool sizes derived from C3 vegetation gave highly correlated values. # 2000 Elsevier Science Ltd. All rights reserved.


Soil Biology & Biochemistry | 1978

Criteria for measurement of microbial growth and activity in soil

P. Nannipieri; R.L. Johnson; Eldor A. Paul

Abstract Changes in CO2 evolution, phosphatase and urease activity and ATP contents were related to bacterial and fungal biomass determined microscopically during glucose mineralization at different concentrations of mineral nutrients. Similar results were obtained in a sandy loam and a clay soil except that in the clay the increase in microbial and enzyme activities were delayed. Higher initial rates of CO2 evolution were noted after the addition of P to a glucose and N amended soil at C:P ratios greater than 30:1. Increases in phosphatase activity coincided with increases in bacterial and fungal populations only in treatments without inorganic P. Peak rates of CO2 evolution preceded biomass production by 18–24 h, therefore, CO2 evolution rates did not show a correlation on normal regression analysis with biomass. Soil ATP content was influenced by P concentrations and soil type. ATP was therefore not a specific indicator of biomass in the detailed studies where P concentrations and sequential growth of bacteria and fungi were major factors. Soil urease increased with bacterial and fungal populations. It did not respond to P other than through microbial biomass and was highly correlated with microbial biomass. The results show that no one measurement of microbial biomass or activity is sufficient to interpret microbial growth in the soil system. Each of the criteria measured were sensitive to specific conditions affecting biomass and activity.


Plant and Soil | 2000

Spatial heterogeneity of soil respiration and related properties at the plant scale

Helmut Stoyan; Helvécio De-Polli; Sven Bohm; G. Philip Robertson; Eldor A. Paul

Geostatistical techniques were used to quantify the scale and degree of soil heterogeneity in 2 m2 plots around 9-year-old poplar trees and within a wheat field. Samples were taken during two years, on an unaligned grid, for analysis of soil respiration, C and N content, available P, gravimetric moisture, pH, nitrification potential, and root biomass. Kriged maps of soil respiration, moisture, and C content showed strong spatial structure associated with poplar trees but not with wheat rows. All soil properties showed higher autocorrelation in June than in April. Isopleth patchiness for all variates was less in June. This was associated with lower respiration rates due to lower litter decomposition. From the degree and scale of heterogeneity seen in this study, we conclude that the main causes of soil heterogeneity at this scale (2 m2) are likely to be found at micro scales controlled in part by plant root and plant residue patterns. These must be understood in the evaluation of ecosystem processes.


Advances in Agronomy | 1970

The microflora of grassland.

Francis E. Clark; Eldor A. Paul

Publisher Summary The role of microscopically small organisms in numerous soil processes, particularly those affecting plant productivity, is well recognized. Less well known is the quantity of recently gathered information concerning microorganisms as the components of major plant communities and the extent to which they participate in the total energy flow therein. Although the soil microflora is the single most important group in the annual turnover of energy trapped by photosynthesis, no broad general review of the microflora of grassland has heretofore been compiled. There is a rich microflora associated with the surfaces of living plants that is either nonpathogenic or at most functioning at an extremely marginal level of pathogenicity. This microflora feeds primarily on exudates and sloughed cellular material. It commonly is divided into two categories: (a) the aboveground, shoot-associated microflora, or broadly referred as the “phyllosphere” and (b) the belowground, root-associated microflora, broadly referred as the “rhizophere.” This chapter examines the microflora of grassland litter, the microflora of grassland soils, biomass and bioactivity measurements, the humic component of grassland soil, and nitrogen transformations in grassland soils.


Applied and Environmental Microbiology | 2000

Effects of Agronomic Treatments on Structure and Function of Ammonia-Oxidizing Communities

Carol J. Phillips; Dave Harris; Sherry L. Dollhopf; Katherine L. Gross; James I. Prosser; Eldor A. Paul

ABSTRACT The aim of this study was to determine the effects of different agricultural treatments and plant communities on the diversity of ammonia oxidizer populations in soil. Denaturing gradient gel electrophoresis (DGGE), coupled with specific oligonucleotide probing, was used to analyze 16S rRNA genes of ammonia oxidizers belonging to the β subgroup of the division Proteobacteria by use of DNA extracted from cultivated, successional, and native deciduous forest soils. Community profiles of the different soil types were compared with nitrification rates and most-probable-number (MPN) counts. Despite significant variation in measured nitrification rates among communities, there were no differences in the DGGE banding profiles of DNAs extracted from these soils. DGGE profiles of DNA extracted from samples of MPN incubations, cultivated at a range of ammonia concentrations, showed the presence of bands not amplified from directly extracted DNA. Nitrosomonas-like bands were seen in the MPN DNA but were not detected in the DNA extracted directly from soils. These bands were detected in some samples taken from MPN incubations carried out with medium containing 1,000 μg of NH4+-N ml−1, to the exclusion of bands detected in the native DNA. Cell concentrations of ammonia oxidizers determined by MPN counts were between 10- and 100-fold lower than those determined by competitive PCR (cPCR). Although no differences were seen in ammonia oxidizer MPN counts from the different soil treatments, cPCR revealed higher numbers in fertilized soils. The use of a combination of traditional and molecular methods to investigate the activities and compositions of ammonia oxidizers in soil demonstrates differences in fine-scale compositions among treatments that may be associated with changes in population size and function.

Collaboration


Dive into the Eldor A. Paul's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keith Paustian

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alain F. Plante

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Harold P. Collins

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

D. Harris

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

D. A. Rennie

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge