Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eleanor D. Lederer is active.

Publication


Featured researches published by Eleanor D. Lederer.


Proceedings of the National Academy of Sciences of the United States of America | 2002

PDZ-domain interactions and apical expression of type IIa Na/Pi cotransporters

Nati Hernando; Nadine Déliot; Serge M. Gisler; Eleanor D. Lederer; Edward J. Weinman; Jürg Biber; Heini Murer

Type IIa Na/Pi cotransporters are expressed in renal proximal brush border and are the major determinants of inorganic phosphate (Pi) reabsorption. Their carboxyl-terminal tail contains information for apical expression, and interacts by means of its three terminal amino acids with several PSD95/DglA/ZO-1-like domain (PDZ)-containing proteins. Two of these proteins, NaPi-Cap1 and Na/H exchanger-regulatory factor 1 (NHERF1), colocalize with the cotransporter in the proximal brush border. We used opossum kidney cells to test the hypothesis of a potential role of PDZ-interactions on the apical expression of the cotransporter. We found that opossum kidney cells contain NaPi-Cap1 and NHERF1 mRNAs. For NHERF1, an apical location of the protein could be documented; this location probably reflects interaction with the cytoskeleton by means of the MERM-binding domain. Overexpression of PDZ domains involved in interaction with the cotransporter (PDZ-1/NHERF1 and PDZ-3/NaPi-Cap1) had a dominant–negative effect, disturbing the apical expression of the cotransporter without affecting the actin cytoskeleton or the basolateral expression of Na/K-ATPase. These data suggest an involvement of PDZ-interactions on the apical expression of type IIa cotransporters.


Journal of Biological Chemistry | 1997

Parathyroid Hormone-dependent Degradation of Type II Na+/Pi Cotransporters

Markus F. Pfister; Eleanor D. Lederer; Judith Forgo; Urs Ziegler; Marius Lötscher; Elgar S. Quabius; Jürg Biber; Heini Murer

Parathyroid hormone (PTH) inhibits proximal tubular brush border membrane Na+/Picotransport activity; this decrease in the transport activity was found to be associated with a decrease in type II Na+/Pi cotransporter protein content in rat brush border membranes. In the present study we investigated the PTH-dependent regulation of the type II Na+/Pi cotransporter in opossum kidney cells, a previously established model to study cellular mechanisms involved in the regulation of proximal tubular Na+/Picotransport. We transfected opossum kidney cells with a cDNA coding for NaPi-2 (rat renal type II Na+/Pi cotransporter). This allowed the study of PTH-dependent regulation of the transfected NaPi-2 and of the corresponding intrinsic cotransporter (NaPi-4). The results show (i) that the intrinsic and the transfected cotransporters are functionally (transport) and morphologically (immunofluorescence) localized at the apical membrane, (ii) that the intrinsic as well as the transfected Na+/Pi cotransport activities are inhibited by PTH, (iii) that PTH leads to a retrieval of both cotransporters from the apical membrane, (iv) that both cotransporters are rapidly degraded in response to PTH, and (v) that the reappearance/recovery of type II Na+/Pi cotransporter protein and function from PTH inhibition requires de novo protein synthesis. These results document that PTH leads to a removal of type II Na+/Pi cotransporters from the apical membrane and to their subsequent degradation.


Journal of The American Society of Nephrology | 2003

Role of NHERF-1 in Regulation of the Activity of Na-K ATPase and Sodium-Phosphate Co-transport in Epithelial Cells

Eleanor D. Lederer; Syed J. Khundmiri; Edward J. Weinman

Parathyroid hormone (PTH), acting at least in part through a cAMP signaling pathway, regulates three important transporters in the renal proximal convoluted tubule, namely Na-H exchanger 3, Na-K ATPase, and type IIa sodium phosphate cotransporter (NaPi IIa). The regulation of Na-H exchanger 3 by protein kinase A requires a protein co-factor from the sodium-hydrogen exchanger regulatory factor (NHERF) family of proteins (NHERF-1 and NHERF-2). However, the role of NHERF in PTH regulation of Na-K ATPase and NaPi IIa has not been explored. For studying the role of NHERF-1 on PTH regulation of these transporters, wild-type mNHERF-1 (1-355) or mNHERF-1 (1-325) lacking the ezrin-binding domain were expressed in proximal tubule-derived opossum kidney cells. PTH inhibited Na-K ATPase activity in cells expressing wild-type NHERF-1 associated with increased serine phosphorylation of the alpha subunit of the transporter. By contrast, in cells expressing mNHERF (1-325), the phosphorylation of the alpha subunit of Na-K ATPase was blunted and the activity of the transporter was stimulated in response to PTH. Basal sodium-dependent phosphate transport was lower in cells expressing mNHERF-1 (1-325) as compared with cells expressing mNHERF-1 (1-355). Nonetheless, there were no differences in PTH-associated inhibition of the activity or the decrease in membrane expression of the NaPi IIa in any of the cell lines. These experiments document for the first time an association between NHERF-1 and PTH regulation of Na-K ATPase in epithelial cells. These experiments also suggest that the mechanism for retrieval of NaPi IIa transporters from the apical membrane in response to cAMP does not require NHERF.


American Journal of Physiology-renal Physiology | 2008

Proteomic analysis of renal calculi indicates an important role for inflammatory processes in calcium stone formation

Michael L. Merchant; Timothy D. Cummins; Daniel W. Wilkey; Sarah A. Salyer; David W. Powell; Jon B. Klein; Eleanor D. Lederer

Even though renal stones/calculi occur in approximately 10% of individuals, they are an enormous economic burden to the entire US health system. While the relative metabolic composition of renal calculi is generally known, there is no clear understanding of the genetics of renal stone formation, nor are there clear prognostic indicators of renal stone formation. The application of proteomics to the analysis of renal calculi axiomatically holds that insight into renal stone pathobiology can be gained by a more comprehensive understanding of renal calculus protein composition. We analyzed isolated renal stone matrix proteins with mass spectrometric and immunohistochemical methods identifying 158 proteins with high confidence, including 28 common proteins. The abundant proteins included those identified previously in stones and proteins identified here for the first time, such as myeloid lineage-specific, integral membrane and lipid regulatory proteins. Pathway analyses of all proteins identified suggested that a significant fraction of the most abundant matrix proteins participate in inflammatory processes. These proteomic results support the hypothesis that stone formation induces a cellular inflammatory response and the protein components of this response contribute to the abundant stone matrix proteome.


American Journal of Kidney Diseases | 1992

Unusual Glomerular Lesion in a Patient Receiving Long-Term Interferon Alpha

Eleanor D. Lederer; Luan Truong

A 60-year-old man with long-standing chronic myelogenous leukemia presented with renal insufficiency and proteinuria after more than 6 years of therapy with daily interferon alpha injections. He also manifested unusual skin lesions and a low-titer antinuclear antibody (ANA). Percutaneous renal biopsy disclosed an unusual glomerular lesion characterized by global, diffuse, and marked widening of the lamina rara interna, and focal segmental mesangial proliferation. Discontinuation of the drug resulted in resolution of the proteinuria, but not the renal insufficiency. These glomerular changes have not been reported previously as a complication of this form of malignancy and are similar to lesions reported in newborn rats and mice receiving interferon alpha. The potential role of interferon alpha in the development of this glomerular disease is discussed.


The Journal of Physiology | 2014

Regulation of serum phosphate

Eleanor D. Lederer

The regulation of serum phosphate, an acknowledged risk factor for chronic kidney disease and cardiovascular mortality, is poorly understood. The discovery of fibroblast growth factor 23 (FGF23) as a key regulator of renal phosphate handling and activation of vitamin D has revolutionized our comprehension of phosphate homeostasis. Through as yet undetermined mechanisms, circulating and dietary phosphate appear to have a direct effect on FGF23 release by bone cells that, in turn, causes renal phosphate excretion and decreases intestinal phosphate absorption through a decrease in vitamin D production. Thus, the two major phosphaturic hormones, PTH and FGF23, have opposing effects on vitamin D production, placing vitamin D at the nexus of phosphate homeostasis. While our understanding of phosphate homeostasis has advanced, the factors determining regulation of serum phosphate level remain enigmatic. Diet, time of day, season, gender, age and genetics have all been identified as significant contributors to serum phosphate level. The effects of these factors on serum phosphate have major implications for what is understood as ‘normal’ and for studies of phosphate homeostasis and metabolism. Moreover, other hormonal mediators such as dopamine, insulin‐like growth factor, and angiotensin II also affect renal handling of phosphate. How the major hormone effects on phosphate handling are regulated and how the effect of these other factors are integrated to yield the measurable serum phosphate are only now beginning to be studied.


Pflügers Archiv: European Journal of Physiology | 2001

Regulation of the renal type IIa Na/Pi cotransporter by cGMP

Desa Bacic; Nati Hernando; Martin Traebert; Eleanor D. Lederer; Harald Völkl; Jürg Biber; Brigitte Kaissling; Heini Murer

Inhibition of proximal tubular phosphate (Pi) reabsorption involves, as far as we know, brush border membrane retrieval of the type IIa Na/Pi-cotransporter. The aim of the present study was to analyze whether intracellular cGMP-mediated regulation of Pi reabsorption also involves retrieval of the type IIa Na/Pi-cotransporter, as previously shown for cAMP. Atrial natriuretic peptide (ANP) and nitric oxide (NO) were used to stimulate guanylate cyclase. In vivo perfusion of mice kidneys with either ANP or NO donors resulted in a downregulation of type IIa Na/Pi-cotransporters on the brush border membranes of proximal tubules. These effects were mimicked by activation of protein kinase G with 8Br-cGMP. In in-vitro-perfused mice proximal tubules, ANP was effective when added either to the apical or basolateral perfusate, suggesting the presence of receptors on both membrane sites. The effects of ANP and NO were blocked by the protein kinase G inhibitor LY 83553. Parallel experiments in OK cells, a renal proximal tubule model, provided similar information. Our findings document that cGMP-mediated regulation (ANP and NO) of type IIa Na/Pi-cotransporters also takes place via internalization of the transporter protein.


American Journal of Physiology-renal Physiology | 1998

Regulation of expression of type II sodium-phosphate cotransporters by protein kinases A and C

Eleanor D. Lederer; Sameet S. Sohi; Jeanine M. Mathiesen; Jon B. Klein

The purpose of the present study was to determine the effect of protein kinase A and protein kinase C activation on the membrane expression of NaPi-4, the type II sodium-phosphate cotransporter in OK cells. NaPi-4 expression was measured using polyclonal antisera produced in rabbits against a peptide identical to the carboxy-terminal 12-amino acid sequence of NaPi-4. The antisera identified an apically localized protein by confocal imaging of intact OK cells and a broad band of 110-140 kDa by immunoblot analysis of OK cell membranes. Treatment of OK cells with parathyroid hormone (PTH) decreased the intensity of the 110- to 140-kDa band, which was detectable by 2 h, maximal by 4 h at 62%, and sustained for 24 h. 8-Bromo-cAMP (8-BrcAMP) inhibited NaPi-4 expression for up to 24 h by over 90%. However, phorbol 12-myristate 13-acetate inhibited NaPi-4 expression by less than 10%. PTH-(3-34), a fragment which stimulates only protein kinase C, inhibited phosphate transport but also had no effect on NaPi-4 expression. We conclude that protein kinase A but not protein kinase C inhibits sodium-phosphate uptake in OK cells by downregulation of NaPi-4 expression.The purpose of the present study was to determine the effect of protein kinase A and protein kinase C activation on the membrane expression of NaPi-4, the type II sodium-phosphate cotransporter in OK cells. NaPi-4 expression was measured using polyclonal antisera produced in rabbits against a peptide identical to the carboxy-terminal 12-amino acid sequence of NaPi-4. The antisera identified an apically localized protein by confocal imaging of intact OK cells and a broad band of 110-140 kDa by immunoblot analysis of OK cell membranes. Treatment of OK cells with parathyroid hormone (PTH) decreased the intensity of the 110- to 140-kDa band, which was detectable by 2 h, maximal by 4 h at 62%, and sustained for 24 h. 8-Bromo-cAMP (8-BrcAMP) inhibited NaPi-4 expression for up to 24 h by over 90%. However, phorbol 12-myristate 13-acetate inhibited NaPi-4 expression by less than 10%. PTH-(3-34), a fragment which stimulates only protein kinase C, inhibited phosphate transport but also had no effect on NaPi-4 expression. We conclude that protein kinase A but not protein kinase C inhibits sodium-phosphate uptake in OK cells by downregulation of NaPi-4 expression.


American Journal of Physiology-cell Physiology | 2011

Cystathionine β-synthase and cystathionine γ-lyase double gene transfer ameliorate homocysteine-mediated mesangial inflammation through hydrogen sulfide generation

Utpal Sen; Srikanth Givvimani; Oluwasegun A. Abe; Eleanor D. Lederer; Suresh C. Tyagi

Elevated level of homocysteine (Hcy) induces chronic inflammation in vascular bed, including glomerulus, and promotes glomerulosclerosis. In this study we investigated in vitro mechanism of Hcy-mediated monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-2 (MIP-2) induction and determined the regulatory role of hydrogen sulfide (H₂S) to ameliorate inflammation. Mouse glomerular mesangial cells (MCs) were incubated with Hcy (75 μM) and supplemented with vehicle or with H₂S (30 μM, in the form of NaHS). Inflammatory molecules MCP-1 and MIP-2 were measured by ELISA. Cellular capability to generate H₂S was measured by colorimetric chemical method. To enhance endogenous production of H₂S and better clearance of Hcy, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) genes were delivered to the cells. Oxidative NAD(P)H p47(phox) was measured by Western blot analysis and immunostaining. Phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun NH₂-terminal kinase (JNK1/2) were measured by Western blot analysis. Our results demonstrated that Hcy upregulated inflammatory molecules MCP-1 and MIP-2, whereas endogenous production of H₂S was attenuated. H₂S treatment as well as CBS and CSE doubly cDNA overexpression markedly reduced Hcy-induced upregulation of MCP-1 and MIP-2. Hcy-induced upregulation of oxidative p47(phox) was attenuated by H₂S supplementation and CBS/CSE overexpression as well. In addition to that we also detected Hcy-induced MCP-1 and MIP-2 induction was through phosphorylation of ERK1/2 and JNK1/2. Either H₂S supplementation or CBS and CSE doubly cDNA overexpression attenuated Hcy-induced phosphorylation of these two signaling molecules and diminished MCP-1 and MIP-2 expressions. Similar results were obtained by inhibition of ERK1/2 and JNK1/2 using pharmacological and small interferring RNA (siRNA) blockers. We conclude that H₂S plays a regulatory role in Hcy-induced mesangial inflammation and that ERK1/2 and JNK1/2 are two signaling pathways involved this process.


Clinical Journal of The American Society of Nephrology | 2012

Clinical Consequences of Mutations in Sodium Phosphate Cotransporters

Eleanor D. Lederer; Ken-ichi Miyamoto

Three families of sodium phosphate cotransporters have been described. Their specific roles in human health and disease have not been defined. Review of the literature reveals that the type II sodium phosphate cotransporters play a significant role in transepithelial transport in a number of tissues including kidney, intestine, salivary gland, mammary gland, and lung. The type I transporters seem to play a major role in renal urate handling and mutations in these proteins have been implicated in susceptibility to gout. The ubiquitously expressed type III transporters play a lesser role in phosphate homeostasis but contribute to cellular phosphate uptake, mineralization, and inflammation. The recognition of species differences in the expression, regulation, and function of these transport proteins suggests an urgent need to find ways to study them in humans.

Collaboration


Dive into the Eleanor D. Lederer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jon B. Klein

Anschutz Medical Campus

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge