Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eleanor W. Trotter is active.

Publication


Featured researches published by Eleanor W. Trotter.


Molecular Microbiology | 2002

Thioredoxins are required for protection against a reductive stress in the yeast Saccharomyces cerevisiae

Eleanor W. Trotter; Chris M. Grant

Thioredoxins are small, highly conserved oxidoreductases that are required to maintain the redox homeostasis of the cell. They have been best characterized for their role as antioxidants in protection against reactive oxygen species. We show here that thioredoxins (TRX1, TRX2) and thioredoxin reductase (TRR1) are also required for protection against a reductive stress induced by exposure to dithiothreitol (DTT). This sensitivity to reducing conditions is not a general property of mutants affected in redox control, as mutants lacking components of the glutathione/glutaredoxin system are unaffected. Furthermore, TRX2 gene expression is induced in response to DTT treatment, indicating that thioredoxins form part of the cellular response to a reductive challenge. Our data indicate that the sensitivity of thioredoxin mutants to reducing stress appears to be a consequence of elevated glutathione levels, which is present predominantly in the reduced form (GSH). The elevated GSH levels also result in a constitutively high unfolded protein response (UPR), indicative of an accumulation of unfolded proteins in the endoplasmic reticulum (ER). However, there does not appear to be a general defect in ER function in thioredoxin mutants, as oxidative protein folding of the model protein carboxypeptidase Y occurs with similar kinetics to the wild‐type strain, and trx1 trx2 mutants are unaffected in sensitivity to the glycosylation inhibitor tunicamycin. Furthermore, trr1 mutants are resistant to tunicamycin, consistent with their high UPR. The high UPR seen in trr1 mutants can be abrogated by the GSH‐specific reagent 1‐chloro‐2,4‐dinitrobenzene. In summary, thioredoxins are required to maintain redox homeostasis in response to both oxidative and reductive stress conditions.


EMBO Reports | 2003

Non‐reciprocal regulation of the redox state of the glutathione–glutaredoxin and thioredoxin systems

Eleanor W. Trotter; Chris M. Grant

Our studies in yeast show that there is an essential requirement for either an active thioredoxin or an active glutathione (GSH)–glutaredoxin system for cell viability. Glutathione reductase (Glr1) and thioredoxin reductase (Trr1) are key regulatory enzymes that determine the redox state of the GSH–glutaredoxin and thioredoxin systems, respectively. Here we show that Trr1 is required during normal cell growth, whereas there is no apparent requirement for Glr1. Analysis of the redox state of thioredoxins and glutaredoxins in glr1 and trr1 mutants reveals that thioredoxins are maintained independently of the glutathione system. In contrast, there is a strong correlation between the redox state of glutaredoxins and the oxidation state of the GSSG/2GSH redox couple. We suggest that independent redox regulation of thioredoxins enables cells to survive in conditions under which the GSH–glutaredoxin system is oxidized.


Cell | 2015

Cancer-Associated Protein Kinase C Mutations Reveal Kinase’s Role as Tumor Suppressor

Corina E. Antal; Andrew M Hudson; Emily Kang; Ciro Zanca; Christopher Wirth; Natalie L. Stephenson; Eleanor W. Trotter; Lisa L. Gallegos; Crispin J. Miller; Frank B. Furnari; Tony Hunter; John Brognard; Alexandra C. Newton

Protein kinase C (PKC) isozymes have remained elusive cancer targets despite the unambiguous tumor promoting function of their potent ligands, phorbol esters, and the prevalence of their mutations. We analyzed 8% of PKC mutations identified in human cancers and found that, surprisingly, most were loss of function and none were activating. Loss-of-function mutations occurred in all PKC subgroups and impeded second-messenger binding, phosphorylation, or catalysis. Correction of a loss-of-function PKCβ mutation by CRISPR-mediated genome editing in a patient-derived colon cancer cell line suppressed anchorage-independent growth and reduced tumor growth in a xenograft model. Hemizygous deletion promoted anchorage-independent growth, revealing that PKCβ is haploinsufficient for tumor suppression. Several mutations were dominant negative, suppressing global PKC signaling output, and bioinformatic analysis suggested that PKC mutations cooperate with co-occurring mutations in cancer drivers. These data establish that PKC isozymes generally function as tumor suppressors, indicating that therapies should focus on restoring, not inhibiting, PKC activity.


Arthritis & Rheumatism | 2013

Protein kinase Cδ deficiency causes mendelian systemic lupus erythematosus with B cell-defective apoptosis and hyperproliferation

Alexandre Belot; Paul R. Kasher; Eleanor W. Trotter; Anne Perrine Foray; Anne Laure Debaud; Gillian I. Rice; Marcin Szynkiewicz; Marie Thérèse Zabot; Isabelle Rouvet; Sanjeev Bhaskar; Sarah B. Daly; Jonathan E. Dickerson; Josephine Mayer; James O'Sullivan; Laurent Juillard; Jill Urquhart; Shameem Fawdar; Anna A. Marusiak; Natalie L. Stephenson; Bohdan Waszkowycz; Michael W. Beresford; Leslie G. Biesecker; Graeme C.M. Black; Céline René; Jean François Eliaou; Nicole Fabien; Bruno Ranchin; Pierre Cochat; Patrick M. Gaffney; Flore Rozenberg

OBJECTIVE Systemic lupus erythematosus (SLE) is a prototype autoimmune disease that is assumed to occur via a complex interplay of environmental and genetic factors. Rare causes of monogenic SLE have been described, providing unique insights into fundamental mechanisms of immune tolerance. The aim of this study was to identify the cause of an autosomal-recessive form of SLE. METHODS We studied 3 siblings with juvenile-onset SLE from 1 consanguineous kindred and used next-generation sequencing to identify mutations in the disease-associated gene. We performed extensive biochemical, immunologic, and functional assays to assess the impact of the identified mutations on B cell biology. RESULTS We identified a homozygous missense mutation in PRKCD, encoding protein kinase δ (PKCδ), in all 3 affected siblings. Mutation of PRKCD resulted in reduced expression and activity of the encoded protein PKCδ (involved in the deletion of autoreactive B cells), leading to resistance to B cell receptor- and calcium-dependent apoptosis and increased B cell proliferation. Thus, as for mice deficient in PKCδ, which exhibit an SLE phenotype and B cell expansion, we observed an increased number of immature B cells in the affected family members and a developmental shift toward naive B cells with an immature phenotype. CONCLUSION Our findings indicate that PKCδ is crucial in regulating B cell tolerance and preventing self-reactivity in humans, and that PKCδ deficiency represents a novel genetic defect of apoptosis leading to SLE.


Eukaryotic Cell | 2005

Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae

Eleanor W. Trotter; Chris M. Grant

ABSTRACT Thioredoxins are small, highly conserved oxidoreductases which are required to maintain the redox homeostasis of the cell. Saccharomyces cerevisiae contains a cytoplasmic thioredoxin system (TRX1, TRX2, and TRR1) as well as a complete mitochondrial thioredoxin system, comprising a thioredoxin (TRX3) and a thioredoxin reductase (TRR2). In the present study we have analyzed the functional overlap between the two systems. By constructing mutant strains with deletions of both the mitochondrial and cytoplasmic systems (trr1 trr2 and trx1 trx2 trx3), we show that cells can survive in the absence of both systems. Analysis of the redox state of the cytoplasmic thioredoxins reveals that they are maintained independently of the mitochondrial system. Similarly, analysis of the redox state of Trx3 reveals that it is maintained in the reduced form in wild-type cells and in mutants lacking components of the cytoplasmic thioredoxin system (trx1 trx2 or trr1). Surprisingly, the redox state of Trx3 is also unaffected by the loss of the mitochondrial thioredoxin reductase (trr2) and is largely maintained in the reduced form unless cells are exposed to an oxidative stress. Since glutathione reductase (Glr1) has been shown to colocalize to the cytoplasm and mitochondria, we examined whether loss of GLR1 influences the redox state of Trx3. During normal growth conditions, deletion of TRR2 and GLR1 was found to result in partial oxidation of Trx3, indicating that both Trr2 and Glr1 are required to maintain the redox state of Trx3. The oxidation of Trx3 in this double mutant is even more pronounced during oxidative stress or respiratory growth conditions. Taken together, these data indicate that Glr1 and Trr2 have an overlapping function in the mitochondria.


Journal of Biological Chemistry | 2003

Coupling of the transcriptional regulation of glutathione biosynthesis to the availability of glutathione and methionine via the Met4 and Yap1 transcription factors

Glen L. Wheeler; Eleanor W. Trotter; Ian W. Dawes; Chris M. Grant

Depletion of the cellular pool of glutathione is detrimental to eukaryotic cells and in Saccharomyces cerevisiae leads to sensitivity to oxidants and xenobiotics and an eventual cell cycle arrest. Here, we show that the Yap1 and Met4 transcription factors regulate the expression of γ-glutamylcysteine synthetase (GSH1), encoding the rate-limiting enzyme in glutathione biosynthesis to prevent the damaging effects of glutathione depletion. Transcriptional profiling of a gsh1 mutant indicates that glutathione depletion leads to a general activation of Yap1 target genes, but the expression of Met4-regulated genes remains unaltered. Glutathione depletion appears to result in Yap1 activation via oxidation of thioredoxins, which normally act to down-regulate the Yap1-mediated response. The requirement for Met4 in regulating GSH1 expression is lost in the absence of the centromere-binding protein Cbf1. In contrast, the Yap1-mediated effect is unaffected, indicating that Met4 acts via Cbf1 to regulate the Yap1-mediated induction of GSH1 expression in response to glutathione depletion. Furthermore, yeast cells exposed to the xenobiotic 1-chloro-2,4-dintrobenzene are rapidly depleted of glutathione, accumulate oxidized thioredoxins, and elicit the Yap1/Met4-dependent transcriptional response of GSH1. The addition of methionine, which promotes Met4 ubiquitination and inactivation, specifically represses GSH1 expression after 1-chloro-2,4-dintrobenzene exposure but does not affect Yap1 activation. These results indicate that the Yap1-dependant activation of GSH1 expression in response to glutathione depletion is regulated by the sulfur status of the cell through a specific Met4-dependant mechanism.


Applied and Environmental Microbiology | 2006

Old Yellow Enzymes Protect against Acrolein Toxicity in the Yeast Saccharomyces cerevisiae

Eleanor W. Trotter; Emma J. Collinson; Ian W. Dawes; Chris M. Grant

ABSTRACT Acrolein is a ubiquitous reactive aldehyde which is formed as a product of lipid peroxidation in biological systems. In this present study, we screened the complete set of viable deletion strains in Saccharomyces cerevisiae for sensitivity to acrolein to identify cell functions involved in resistance to reactive aldehydes. We identified 128 mutants whose gene products are localized throughout the cell. Acrolein-sensitive mutants were distributed among most major biological processes but particularly affected gene expression, metabolism, and cellular signaling. Surprisingly, the screen did not identify any antioxidants or similar stress-protective molecules, indicating that acrolein toxicity may not be mediated via reactive oxygen species. Most strikingly, a mutant lacking an old yellow enzyme (OYE2) was identified as being acrolein sensitive. Old yellow enzymes are known to reduce α,β-unsaturated carbonyl compounds in vitro, but their physiological roles have remained uncertain. We show that mutants lacking OYE2, but not OYE3, are sensitive to acrolein, and overexpression of both isoenzymes increases acrolein tolerance. Our data indicate that OYE2 is required for basal levels of tolerance, whereas OYE3 expression is particularly induced following acrolein stress. Despite the range of α,β-unsaturated carbonyl compounds that have been identified as substrates of old yellow enzymes in vitro, we show that old yellow enzymes specifically mediate resistance to small α,β-unsaturated carbonyl compounds, such as acrolein, in vivo.


Journal of Biological Chemistry | 2011

Transcript Profiling and Inference of Escherichia coli K-12 ArcA Activity across the Range of Physiologically Relevant Oxygen Concentrations

Matthew D. Rolfe; Alex Ter Beek; Alison I. Graham; Eleanor W. Trotter; H. M. Shahzad Asif; Guido Sanguinetti; Joost Teixeira de Mattos; Robert K. Poole; Jeffrey Green

Oxygen availability is the major determinant of the metabolic modes adopted by Escherichia coli. Although much is known about E. coli gene expression and metabolism under fully aerobic and anaerobic conditions, the intermediate oxygen tensions that are encountered in natural niches are understudied. Here, for the first time, the transcript profiles of E. coli K-12 across the physiologically significant range of oxygen availabilities are described. These suggested a progressive switch to aerobic respiratory metabolism and a remodeling of the cell envelope as oxygen availability increased. The transcriptional responses were consistent with changes in the abundance of cytochrome bd and bo′ and the outer membrane protein OmpW. The observed transcript and protein profiles result from changes in the activities of regulators that respond to oxygen itself or to metabolic and environmental signals that are sensitive to oxygen availability (aerobiosis). A probabilistic model (TFInfer) was used to predict the activity of the indirect oxygen-sensing two-component system ArcBA across the aerobiosis range. The model implied that the activity of the regulator ArcA correlated with aerobiosis but not with the redox state of the ubiquinone pool, challenging the idea that ArcA activity is inhibited by oxidized ubiquinone. The amount of phosphorylated ArcA correlated with the predicted ArcA activities and with aerobiosis, suggesting that fermentation product-mediated inhibition of ArcB phosphatase activity is the dominant mechanism for regulating ArcA activity under the conditions used here.


Biochemical Journal | 2008

The yeast Tsa1 peroxiredoxin is a ribosome-associated antioxidant.

Eleanor W. Trotter; Jonathan D. Rand; Jill Vickerstaff; Chris M. Grant

The yeast Tsa1 peroxiredoxin, like other 2-Cys peroxiredoxins, has dual activities as a peroxidase and as a molecular chaperone. Its peroxidase function predominates in lower-molecular-mass forms, whereas a super-chaperone form predominates in high-molecular-mass complexes. Loss of TSA1 results in aggregation of ribosomal proteins, indicating that Tsa1 functions to maintain the integrity of the translation apparatus. In the present study we report that Tsa1 functions as an antioxidant on actively translating ribosomes. Its peroxidase activity is required for ribosomal function, since mutation of the peroxidatic cysteine residue, which inactivates peroxidase but not chaperone activity, results in sensitivity to translation inhibitors. The peroxidatic cysteine residue is also required for a shift from ribosomes to its high-molecular-mass form in response to peroxide stress. Thus Tsa1 appears to function predominantly as an antioxidant in protecting both the cytosol and actively translating ribosomes against endogenous ROS (reactive oxygen species), but shifts towards its chaperone function in response to oxidative stress conditions. Analysis of the distribution of Tsa1 in thioredoxin system mutants revealed that the ribosome-associated form of Tsa1 is increased in mutants lacking thioredoxin reductase (trr1) and thioredoxins (trx1 trx2) in parallel with the general increase in total Tsa1 levels which is observed in these mutants. In the present study we show that deregulation of Tsa1 in the trr1 mutant specifically promotes translation defects including hypersensitivity to translation inhibitors, increased translational error-rates and ribosomal protein aggregation. These results have important implications for the role of peroxiredoxins in stress and growth control, since peroxiredoxins are likely to be deregulated in a similar manner during many different disease states.


PLOS ONE | 2011

Reprogramming of Escherichia coli K-12 Metabolism during the Initial Phase of Transition from an Anaerobic to a Micro-Aerobic Environment

Eleanor W. Trotter; Matthew D. Rolfe; Andrea M. Hounslow; C. Jeremy Craven; Michael P. Williamson; Guido Sanguinetti; Robert K. Poole; Jeffrey Green

Background Many bacteria undergo transitions between environments with differing O2 availabilities as part of their natural lifestyles and during biotechnological processes. However, the dynamics of adaptation when bacteria experience changes in O2 availability are understudied. The model bacterium and facultative anaerobe Escherichia coli K-12 provides an ideal system for exploring this process. Methods and Findings Time-resolved transcript profiles of E. coli K-12 during the initial phase of transition from anaerobic to micro-aerobic conditions revealed a reprogramming of gene expression consistent with a switch from fermentative to respiratory metabolism. The changes in transcript abundance were matched by changes in the abundances of selected central metabolic proteins. A probabilistic state space model was used to infer the activities of two key regulators, FNR (O2 sensing) and PdhR (pyruvate sensing). The model implied that both regulators were rapidly inactivated during the transition from an anaerobic to a micro-aerobic environment. Analysis of the external metabolome and protein levels suggested that the cultures transit through different physiological states during the process of adaptation, characterized by the rapid inactivation of pyruvate formate-lyase (PFL), a slower induction of pyruvate dehydrogenase complex (PDHC) activity and transient excretion of pyruvate, consistent with the predicted inactivation of PdhR and FNR. Conclusion Perturbation of anaerobic steady-state cultures by introduction of a limited supply of O2 combined with time-resolved transcript, protein and metabolite profiling, and probabilistic modeling has revealed that pyruvate (sensed by PdhR) is a key metabolic signal in coordinating the reprogramming of E. coli K-12 gene expression by working alongside the O2 sensor FNR during transition from anaerobic to micro-aerobic conditions.

Collaboration


Dive into the Eleanor W. Trotter's collaboration.

Top Co-Authors

Avatar

John Brognard

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna A. Marusiak

Manchester Academic Health Science Centre

View shared research outputs
Top Co-Authors

Avatar

Chris M. Grant

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Shameem Fawdar

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Tony Hunter

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Yaoyong Li

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge