Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elek Molnár is active.

Publication


Featured researches published by Elek Molnár.


The Journal of Neuroscience | 2004

Differential Roles of NR2A and NR2B-Containing NMDA Receptors in Cortical Long-Term Potentiation and Long-Term Depression

Peter V. Massey; Benjamin E. Johnson; Peter R. Moult; Yves Auberson; Malcolm W. Brown; Elek Molnár; Graham L. Collingridge; Zafar I. Bashir

It is widely believed that long-term depression (LTD) and its counterpart, long-term potentiation (LTP), involve mechanisms that are crucial for learning and memory. However, LTD is difficult to induce in adult cortex for reasons that are not known. Here we show that LTD can be readily induced in adult cortex by the activation of NMDA receptors (NMDARs), after inhibition of glutamate uptake. Interestingly there is no need to activate synaptic NMDARs to induce this LTD, suggesting that LTD is triggered primarily by extrasynaptic NMDA receptors. We also find that de novo LTD requires the activation of NR2B-containing NMDAR, whereas LTP requires activation of NR2A-containing NMDARs. Surprisingly another form of LTD, depotentiation, requires activation of NR2A-containing NMDARs. Therefore, NMDARs with different synaptic locations and subunit compositions are involved in various forms of synaptic plasticity in adult cortex.


Neuron | 1998

NSF Binding to GluR2 Regulates Synaptic Transmission

Atsushi Nishimune; John T. R. Isaac; Elek Molnár; Jacques Noël; S.Russell Nash; Mitsuo Tagaya; Graham L. Collingridge; Shigetada Nakanishi; Jeremy M. Henley

Here, we show that N-ethylmaleimide-sensitive fusion protein (NSF) interacts directly and selectively with the intracellular C-terminal domain of the GluR2 subunit of AMPA receptors. The interaction requires all three domains of NSF but occurs between residues Lys-844 and Gln-853 of rat GluR2, with Asn-851 playing a critical role. Loading of decapeptides corresponding to the NSF-binding domain of GluR2 into rat hippocampal CA1 pyramidal neurons results in a marked, progressive decrement of AMPA receptor-mediated synaptic transmission. This reduction in synaptic transmission was also observed when an anti-NSF monoclonal antibody (mAb) was loaded into CA1 neurons. These results demonstrate a previously unsuspected direct interaction in the postsynaptic neuron between two major proteins involved in synaptic transmission and suggest a rapid NSF-dependent modulation of AMPA receptor function.


The Journal of Neuroscience | 2008

The Tyrosine Phosphatase STEP Mediates AMPA Receptor Endocytosis after Metabotropic Glutamate Receptor Stimulation

Yang Zhang; Deepa V. Venkitaramani; Clare M. Gladding; Yongfang Zhang; Pradeep Kurup; Elek Molnár; Graham L. Collingridge; Paul J. Lombroso

Although it is well established that AMPA receptor (AMPAR) trafficking is a central event in several forms of synaptic plasticity, the mechanisms that regulate the surface expression of AMPARs are poorly understood. Previous work has shown that striatal-enriched protein tyrosine phosphatase (STEP) mediates NMDAR endocytosis. This protein tyrosine phosphatase is enriched in the synapses of the striatum, hippocampus, cerebral cortex, and other brain regions. In the present investigation, we have explored whether STEP also regulates AMPAR internalization. We found that (RS)-3,5-dihydroxyphenylglycine (DHPG) stimulation triggered a dose-dependent increase in STEP translation in hippocampal slices and synaptoneurosomes, a process that requires stimulation of mGluR5 (metabotropic glutamate receptor 5) and activation of mitogen-activated protein kinases and phosphoinositide-3 kinase pathways. DHPG-induced AMPAR internalization and tyrosine dephosphorylation of GluR2 (glutamate receptor 2) was blocked by a substrate-trapping TAT-STEP [C/S] protein in hippocampal slices and cultures. Moreover, DHPG-triggered AMPAR internalization was abolished in STEP knock-out mice and restored after replacement of wild-type STEP. These results suggest a role for STEP in the regulation of AMPAR trafficking.


The Journal of Neuroscience | 2006

Tyrosine Phosphatases Regulate AMPA Receptor Trafficking during Metabotropic Glutamate Receptor-Mediated Long-Term Depression

Peter R. Moult; Clare M. Gladding; Thomas M. Sanderson; Stephen M. Fitzjohn; Zafar I. Bashir; Elek Molnár; Graham L. Collingridge

Two forms of long-term depression (LTD), triggered by activation of NMDA receptors (NMDARs) and metabotropic glutamate receptors (mGluRs), respectively, can be induced at CA1 synapses in the hippocampus. Compared with NMDAR-LTD, relatively little is known about mGluR-LTD. Here, we show that protein tyrosine phosphatase (PTP) inhibitors, orthovanadate and phenylarsine oxide, selectively block mGluR-LTD induced by application of the group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG-LTD), because NMDAR-LTD is unaffected by these inhibitors. Furthermore, DHPG-LTD measured using whole-cell recording is similarly blocked by either bath-applied or patch-loaded PTP inhibitors. These inhibitors also block the changes in paired-pulse facilitation and coefficient of variation that are associated with the expression of DHPG-LTD. DHPG treatment of hippocampal slices was associated with a decrease in the level of tyrosine phosphorylation of GluR2 AMPA receptor (AMPAR) subunits, an effect blocked by orthovanadate. Finally, in dissociated hippocampal neurons, orthovanadate blocked the ability of DHPG to reduce the number of AMPA receptor clusters on the surface of dendrites. Again, the effects of PTP blockade were selective, because NMDA-induced decreases in surface AMPAR clusters was unaffected by orthovanadate. Together, these data suggest that activation of postsynaptic PTP results in tyrosine dephosphorylation of AMPARs and their removal from the synapse.


The Journal of Neuroscience | 2005

Number and density of AMPA receptors in single synapses in immature cerebellum.

Junichi Tanaka; Masanori Matsuzaki; Etsuko Tarusawa; Akiko Momiyama; Elek Molnár; Haruo Kasai; Ryuichi Shigemoto

The number of ionotropic receptors in synapses is an essential factor for determining the efficacy of fast transmission. We estimated the number of functional AMPA receptors at single postsynaptic sites by a combination of two-photon uncaging of glutamate and the nonstationary fluctuation analysis in immature rat Purkinje cells (PCs), which receive a single type of excitatory input from climbing fibers. Areas of postsynaptic membrane specialization at the recorded synapses were measured by reconstruction of serial ultrathin sections. The number of functional AMPA receptors was proportional to the synaptic area with a density of ∼1280 receptors/μm2. Moreover, highly sensitive freeze-fracture replica labeling revealed a homogeneous density of immunogold particles for AMPA receptors in synaptic sites (910 ± 36 particles/μm2) and much lower density in extrasynaptic sites (19 ± 2 particles/μm2) in the immature PCs. Our results indicate that in this developing synapse, the efficacy of transmission is determined by the synaptic area.


The Journal of Neuroscience | 2007

Number and Density of AMPA Receptors in Individual Synapses in the Rat Cerebellum as Revealed by SDS-Digested Freeze-Fracture Replica Labeling

Miwako Masugi-Tokita; Etsuko Tarusawa; Masahiko Watanabe; Elek Molnár; Kazushi Fujimoto; Ryuichi Shigemoto

The number of AMPA receptor (AMPAR) is the major determinant of synaptic strength at glutamatergic synapses, but little is known about the absolute number and density of AMPARs in individual synapses. Using SDS-digested freeze-fracture replica labeling, which has high detection efficiency comparable with electrophysiological noise analysis for functional AMPAR, we analyzed three kinds of excitatory synapses in the molecular layer of the adult rat cerebellum. In parallel fiber (PF)–Purkinje cell (PC) synapses, we found large variability in the number (38.1 ± 34.4 particles per synapse, mean ± SD; range, 2–178 particles per synapse) and density (437 ± 277 particles/μm2; range, 48–1210 particles/μm2) of immunogold-labeled AMPARs. Two-dimensional view and high sensitivity of this method revealed irregular-shaped small AMPAR clusters within synapses. Climbing fiber (CF)–PC synapses had higher number of AMPAR labeling (68.6 ± 34.5 particles per synapse) than PF–PC and PF–interneuron synapses (36.8 ± 14.4 particles per synapse). Furthermore, AMPAR density at CF–PC and PF–interneuron synapses was approximately five times higher and more uniform than that at PF–PC synapses. These results suggest input- and target-dependent regulation of AMPAR-mediated synaptic strength.


Diabetologia | 2002

Metabotropic glutamate and GABAB receptors contribute to the modulation of glucose-stimulated insulin secretion in pancreatic beta cells

N. L. Brice; A. Varadi; Stephen J. H. Ashcroft; Elek Molnár

Aims/hypothesisThe neurotransmitters glutamate and γ-aminobutyric acid (GABA) could participate in the regulation of the endocrine functions of islets of Langerhans. We investigated the role of the metabotropic glutamate (mGluRs) and GABAB (GABABRs) receptors in this process. MethodsWe studied the expression of mGluRs and GABABRs in rat and human islets of Langerhans and in pancreatic α-cell and beta-cell lines using RT-PCR and immunoblot analysis. Effects of mGluR and GABABR agonists on insulin secretion were determined by radioimmunoassays and enzyme-linked immunoadsorbent assays (ELISAs). ResultsWe detected mGluR3 and mGluR5 (but not mGluR1, 6 and 7) mRNAs in all of the samples examined. Trace amount of mGluR2 was found in MIN6 beta cells; mGluR4 was identified in rat islets; and mGluR8 expression was detected in rat islets, RINm5F and MIN6 cells. GABABR1 a/b and 2 mRNAs were identified in islets of Langerhans and MIN6 cells. The expression of mGluR3, mGluR5, GABABR1 a/b and GABABR2 proteins was confirmed using specific antibodies. Group I (mGluR1/5) and group II (mGluR2/3) specific mGluR agonists increased the release of insulin in the presence of 3 to 10 mmol/l or 3 to 25 mmol/l glucose, respectively, whereas a group III (mGluR4/6–8) specific agonist inhibited insulin release at high (10–25 mmol/l) glucose concentrations. Baclofen, a GABABR agonist, also inhibited the release of insulin but only in the presence of 25 mmol/l glucose. Conclusion/interpretationThese data suggest that mGluRs and GABABRs play a role in the regulation of the endocrine pancreas with mechanisms probably involving direct activation or inhibition of voltage dependent Ca2+-channels, cAMP generation and G-protein-mediated modulation of KATP channels. [Diabetologia (2002) 45: 242–252]


Neuropharmacology | 2001

Transient synaptic activation of NMDA receptors leads to the insertion of native AMPA receptors at hippocampal neuronal plasma membranes

Lisa Pickard; Jacques Noël; Joshua K. Duckworth; Stephen M. Fitzjohn; Jeremy M. Henley; Graham L. Collingridge; Elek Molnár

The molecular mechanisms underlying long-term potentiation (LTP) of excitatory synaptic transmission in the hippocampus are not well understood. Transient depolarisation of cultured postnatal hippocampal neurones (3x1 s exposure to 90 mM K+) induces a form of LTP that is manifest primarily as an increase in mEPSC frequency. Site-directed antibodies that recognise an extracellular region of all AMPA receptor (AMPAR) subunits (GluR1-4) were used for the immunolabelling of living neurones. These antibodies were raised in two species to enable sequential immunofluorescent labelling of individual living neurones before and after the induction of LTP. High K+ treatment resulted in the appearance of new AMPAR clusters at sites on the neuronal surface that previously lacked detectable AMPARs. The appearance of new AMPAR clusters was NMDA receptor (NMDAR)-dependent since it was antagonised by the application of NMDAR antagonists. Our data indicate that the transient synaptic activation of NMDARs can lead to the insertion of native AMPARs at sites on the neuronal membrane that initially lacks AMPARs.


Molecular and Cellular Neuroscience | 2001

GABAB Receptors Couple Directly to the Transcription Factor ATF4

Ellen Vernon; Guido Meyer; Lisa Pickard; Kumlesh K. Dev; Elek Molnár; Graham L. Collingridge; Jeremy M. Henley

The inhibitory neurotransmitter gamma-aminobutyric acid (GABA), acts at ionotropic (GABA(A) and GABA(C)) and metabotropic (GABA(B)) receptors. Functional GABA(B) receptors are heterodimers of GABA(B(1)) and GABA(B(2)) subunits. Here we show a robust, direct, and specific interaction between the coiled-coil domain present in the C-terminus of the GABA(B(1)) subunit and the transcription factor ATF4 (also known as CREB2). ATF4 and GABA(B(2)) binding to the GABA(B(1)) subunit were mutually exclusive. In rat hippocampal neurons native GABA(B(1)) showed surprisingly little similarity to GABA(B(2)) in its subcellular distribution. GABA(B(1)) and ATF4, however, were highly colocalized throughout the cell and displayed a punctate distribution within the dendrites. Activation of GABA(B) receptors in hippocampal neurons caused a dramatic translocation of ATF4 out of the nucleus into the cytoplasm. These data suggest a novel neuronal signaling pathway that could regulate the functional expression of GABA(B) receptors and/or modulate gene transcription.


The Journal of Neuroscience | 2009

Input-specific intrasynaptic arrangements of ionotropic glutamate receptors and their impact on postsynaptic responses

Etsuko Tarusawa; Ko Matsui; Timotheus Budisantoso; Elek Molnár; Masahiko Watanabe; Minoru Matsui; Yugo Fukazawa; Ryuichi Shigemoto

To examine the intrasynaptic arrangement of postsynaptic receptors in relation to the functional role of the synapse, we quantitatively analyzed the two-dimensional distribution of AMPA and NMDA receptors (AMPARs and NMDARs, respectively) using SDS-digested freeze-fracture replica labeling (SDS-FRL) and assessed the implication of distribution differences on the postsynaptic responses by simulation. In the dorsal lateral geniculate nucleus, corticogeniculate (CG) synapses were twice as large as retinogeniculate (RG) synapses but expressed similar numbers of AMPARs. Two-dimensional views of replicas revealed that AMPARs form microclusters in both synapses to a similar extent, resulting in larger AMPAR-lacking areas in the CG synapses. Despite the broad difference in the AMPAR distribution within a synapse, our simulations based on the actual receptor distributions suggested that the AMPAR quantal response at individual RG synapses is only slightly larger in amplitude, less variable, and faster in kinetics than that at CG synapses having a similar number of the receptors. NMDARs at the CG synapses were expressed twice as many as those in the RG synapses. Electrophysiological recordings confirmed a larger contribution of NMDAR relative to AMPAR-mediated responses in CG synapses. We conclude that synapse size and the density and distribution of receptors have minor influences on quantal responses and that the number of receptors acts as a predominant postsynaptic determinant of the synaptic strength mediated by both the AMPARs and NMDARs.

Collaboration


Dive into the Elek Molnár's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anikó Váradi

University of the West of England

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shavanthi Rajatileka

University of the West of England

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge