Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elena Berto is active.

Publication


Featured researches published by Elena Berto.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Localized delivery of fibroblast growth factor–2 and brain-derived neurotrophic factor reduces spontaneous seizures in an epilepsy model

Beatrice Paradiso; Peggy Marconi; Silvia Zucchini; Elena Berto; Anna Binaschi; Aleksandra Bozac; Andrea Buzzi; Manuela Mazzuferi; Eros Magri; Graciela Navarro Mora; Donata Rodi; Tao Su; Ilaria Volpi; Lara Zanetti; Andrea Marzola; Roberto Manservigi; Paolo F. Fabene; Michele Simonato

A loss of neurons is observed in the hippocampus of many patients with epilepsies of temporal lobe origin. It has been hypothesized that damage limitation or repair, for example using neurotrophic factors (NTFs), may prevent the transformation of a normal tissue into epileptic (epileptogenesis). Here, we used viral vectors to locally supplement two NTFs, fibroblast growth factor–2 (FGF-2) and brain-derived neurotrophic factor (BDNF), when epileptogenic damage was already in place. These vectors were first characterized in vitro, where they increased proliferation of neural progenitors and favored their differentiation into neurons, and they were then tested in a model of status epilepticus-induced neurodegeneration and epileptogenesis. When injected in a lesioned hippocampus, FGF-2/BDNF expressing vectors increased neuronogenesis, embanked neuronal damage, and reduced epileptogenesis. It is concluded that reduction of damage reduces epileptogenesis and that supplementing specific NTFs in lesion areas represents a new approach to the therapy of neuronal damage and of its consequences.


Journal of Neuroinflammation | 2010

Hippocampal FGF-2 and BDNF overexpression attenuates epileptogenesis-associated neuroinflammation and reduces spontaneous recurrent seizures.

Roberta Bovolenta; Silvia Zucchini; Beatrice Paradiso; Donata Rodi; Flavia Merigo; Graciela Navarrro Mora; Francesco Osculati; Elena Berto; Peggy Marconi; Andrea Marzola; Paolo F. Fabene; Michele Simonato

Under certain experimental conditions, neurotrophic factors may reduce epileptogenesis. We have previously reported that local, intrahippocampal supplementation of fibroblast growth factor-2 (FGF-2) and brain-derived neurotrophic factor (BDNF) increases neurogenesis, reduces neuronal loss, and reduces the occurrence of spontaneous seizures in a model of damage-associated epilepsy. Here, we asked if these possibly anti-epileptogenic effects might involve anti-inflammatory mechanisms. Thus, we used a Herpes-based vector to supplement FGF-2 and BDNF in rat hippocampus after pilocarpine-induced status epilepticus that established an epileptogenic lesion. This model causes intense neuroinflammation, especially in the phase that precedes the occurrence of spontaneous seizures. The supplementation of FGF-2 and BDNF attenuated various parameters of inflammation, including astrocytosis, microcytosis and IL-1β expression. The effect appeared to be most prominent on IL-1β, whose expression was almost completely prevented. Further studies will be needed to elucidate the molecular mechanism(s) for these effects, and for that on IL-1β in particular. Nonetheless, the concept that neurotrophic factors affect neuroinflammation in vivo may be highly relevant for the understanding of the epileptogenic process.


Epilepsia | 2011

Localized overexpression of FGF‐2 and BDNF in hippocampus reduces mossy fiber sprouting and spontaneous seizures up to 4 weeks after pilocarpine‐induced status epilepticus

Beatrice Paradiso; Silvia Zucchini; Tao Su; Roberta Bovolenta; Elena Berto; Peggy Marconi; Andrea Marzola; Graciela Navarro Mora; Paolo F. Fabene; Michele Simonato

Purpose:  We have recently reported that viral vector–mediated supplementation of fibroblast growth factor‐2 (FGF‐2) and brain‐derived neurotrophic factor (BDNF) in a lesioned, epileptogenic rat hippocampus limits neuronal damage, favors neurogenesis, and reduces spontaneous recurrent seizures. To test if this treatment can also prevent hippocampal circuit reorganization, we examined here its effect on mossy fiber sprouting, the best studied form of axonal plasticity in epilepsy.


Journal of Virology | 2004

Protection from Bacterial Infection by a Single Vaccination with Replication-Deficient Mutant Herpes Simplex Virus Type 1

Henning Lauterbach; Kristen M. Kerksiek; Dirk H. Busch; Elena Berto; Aleksandra Bozac; Penelope Mavromara; Roberto Manservigi; Alberto L. Epstein; Peggy Marconi; Thomas Brocker

ABSTRACT Adaptive immune responses in which CD8+ T cells recognize pathogen-derived peptides in the context of major histocompatibility complex class I molecules play a major role in the host defense against infection with intracellular pathogens. Cells infected with intracellular bacteria such as Listeria monocytogenes, Salmonella enterica serovar Typhimurium, or Mycobacterium tuberculosis are directly lysed by cytotoxic CD8+ T cells. For this reason, current vaccines for intracellular pathogens, such as subunit vaccines or viable bacterial vaccines, aim to generate robust cytotoxic T-cell responses. In order to investigate the capacity of a herpes simplex virus type 1 (HSV-1) vector to induce strong cytotoxic effector cell responses and protection from infection with intracellular pathogens, we developed a replication-deficient, recombinant HSV-1 (rHSV-1) vaccine. We demonstrate in side-by-side comparison with DNA vaccination that rHSV-1 vaccination induces very strong CD8+ effector T-cell responses. While both vaccines provided protection from infection with L. monocytogenes at low, but lethal doses, only rHSV-1 vaccines could protect from higher infectious doses; HSV-1 induced potent memory cytotoxic T lymphocytes that, upon challenge by pathogens, efficiently protected the animals. Despite the stimulation of relatively low humoral and CD4-T-cell responses, rHSV-1 vectors are strong candidates for future vaccine strategies that confer efficient protection from subsequent infection with intracellular bacteria.


Gene Therapy | 2005

Development and application of replication-incompetent HSV-1-based vectors.

Elena Berto; Alexandra Bozac; Peggy Marconi

The replication-incompetent HSV-1-based vectors are herpesviruses in which genes that are ‘essential’ for viral replication have been either mutated or deleted. These deletions have substantially reduced their cytotoxicity by preventing early and late viral gene expression and, together with other deletions involving ‘nonessential’ genes, have also created space to introduce distinct and independently regulated expression cassettes for different transgenes. Therapeutic effects in gene therapy applications requiring simultaneous and synergic expression of multiple gene products are easily achievable with these vectors. A number of different HSV-1-based nonreplicative vectors for specific gene therapy applications have been developed so far. They have been tested in different gene therapy animal models of neuropathies (Parkinsons disease, chronic pain, spinal cord injury pain) and lysosomal storage disorders. Many replication-incompetent HSV-1-based vectors have also been used either as potential anti-herpes vaccines, as well as vaccine vectors for other pathogens in murine and simian models. Anticancer gene therapy approaches have also been successfully set up; gene therapy to other targets by using these vectors is feasible.


Gene Therapy | 2005

Effects of defective herpes simplex vectors expressing neurotrophic factors on the proliferation and differentiation of nervous cells in vivo

Peggy Marconi; Silvia Zucchini; Elena Berto; Aleksandra Bozac; Beatrice Paradiso; Gianni Bregola; C. Grassi; Ilaria Volpi; Rafaela Argnani; Andrea Marzola; Roberto Manservigi; Michele Simonato

Neurotrophic factors (NTFs) are known to govern the processes involved in central nervous system cell proliferation and differentiation. Thus, they represent very attractive candidates for use in the study and therapy of neurological disorders. We constructed recombinant herpesvirus-based-vectors capable of expressing fibroblast growth factor-2 (FGF-2) and ciliary neurotrophic factor (CNTF) alone or in combinations. In vitro, vectors expressing FGF-2 and CNTF together, but not those expressing either NTF alone, caused proliferation of O-2A progenitors. Furthermore, based on double-labeling experiments performed using markers for neurons (MAP-2), oligodendrocytes (CNPase) and astrocytes (GFAP), most of the new cells were identified as astrocytes, but many expressed neuronal or oligodendrocytic markers. In vivo, vectors have been injected in the rat hippocampus. At 1 month after inoculation, a highly significant increase in BrdU-positive cells was observed in the dentate gyrus of animals injected with the vector expressing FGF-2 and CNTF together, but not in those injected with vectors expressing the single NTFs. Furthermore, double-labeling experiments confirmed in vitro data, that is, most of the new cells identified as astrocytes, some as neurons or oligodendrocytes. These data show the feasibility of the vector approach to induce proliferation and differentiation of neurons and/or oligodendrocytes in vivo.


PLOS ONE | 2014

An Attenuated Herpes Simplex Virus Type 1 (HSV1) Encoding the HIV-1 Tat Protein Protects Mice from a Deadly Mucosal HSV1 Challenge

Mariaconcetta Sicurella; Francesco Nicoli; Eleonora Gallerani; Ilaria Volpi; Elena Berto; Valentina Finessi; Federica Destro; Roberto Manservigi; Aurelio Cafaro; Barbara Ensoli; Antonella Caputo; Riccardo Gavioli; Peggy Marconi

Herpes simplex virus types 1 and 2 (HSV1 and HSV2) are common infectious agents in both industrialized and developing countries. They cause recurrent asymptomatic and/or symptomatic infections, and life-threatening diseases and death in newborns and immunocompromised patients. Current treatment for HSV relies on antiviral medications, which can halt the symptomatic diseases but cannot prevent the shedding that occurs in asymptomatic patients or, consequently, the spread of the viruses. Therefore, prevention rather than treatment of HSV infections has long been an area of intense research, but thus far effective anti-HSV vaccines still remain elusive. One of the key hurdles to overcome in anti-HSV vaccine development is the identification and effective use of strategies that promote the emergence of Th1-type immune responses against a wide range of epitopes involved in the control of viral replication. Since the HIV1 Tat protein has several immunomodulatory activities and increases CTL recognition of dominant and subdominant epitopes of heterologous antigens, we generated and assayed a recombinant attenuated replication-competent HSV1 vector containing the tat gene (HSV1-Tat). In this proof-of-concept study we show that immunization with this vector conferred protection in 100% of mice challenged intravaginally with a lethal dose of wild-type HSV1. We demonstrate that the presence of Tat within the recombinant virus increased and broadened Th1-like and CTL responses against HSV-derived T-cell epitopes and elicited in most immunized mice detectable IgG responses. In sharp contrast, a similarly attenuated HSV1 recombinant vector without Tat (HSV1-LacZ), induced low and different T cell responses, no measurable antibody responses and did not protect mice against the wild-type HSV1 challenge. These findings strongly suggest that recombinant HSV1 vectors expressing Tat merit further investigation for their potential to prevent and/or contain HSV1 infection and dissemination.


Cancer Gene Therapy | 2007

Antitumor effects of non-replicative herpes simplex vectors expressing antiangiogenic proteins and thymidine kinase on Lewis lung carcinoma establishment and growth.

Elena Berto; Alexandra Bozac; Ilaria Volpi; I Lanzoni; F Vasquez; N Melara; Roberto Manservigi; Peggy Marconi

There is growing evidence that combinations of antiangiogenic proteins with other antineoplastic treatments such as chemo- or radiotherapy and suicide genes-mediated tumor cytotoxicity lead to synergistic effects. In the present work, we tested the activity of two non-replicative herpes simplex virus (HSV)-1-based vectors, encoding human endostatin∷angiostatin or endostatin∷kringle5 fusion proteins in combination with HSV-1 thymidine kinase (TK) molecule, on endothelial cells (ECs) and Lewis lung carcinoma (LLC) cells. We observed a significant reduction of the in vitro growth, migration and tube formation by primary ECs upon direct infection with the two recombinant vectors or cultivation with conditioned media obtained from the vector-infected LLC cells. Moreover, direct cytotoxic effect of HSV-1 TK on both LLC and ECs was demonstrated. We then tested the vectors in vivo in two experimental settings, that is, LLC tumor growth or establishment, in C57BL/6 mice. The treatment of pre-established subcutaneous tumors with the recombinant vectors with ganciclovir (GCV) induced a significant reduction of tumor growth rate, while the in vitro infection of LLC cells with the antiangiogenic vectors before their implantation in mice flanks, either in presence or absence of GCV, completely abolished the tumor establishment.


Vaccine | 2006

Expression of human immunodeficiency virus type 1 tat from a replication-deficient herpes simplex type 1 vector induces antigen-specific T cell responses

Aleksandra Bozac; Elena Berto; Federica Vasquez; Paola Grandi; Antonella Caputo; Roberto Manservigi; Barbara Ensoli; Peggy Marconi


41° Congresso Nazionale della Società Italiana di Microbiologia | 2013

Comunicazione orale: Viral Vector Expressing Tat As Immunomodulatory Molecule Represent A New Vaccine Strategy Against HSV Infection

Mariaconcetta Sicurella; Ilaria Volpi; Elena Berto; Francesco Nicoli; Eleonora Gallerani; Valentina Finessi; Federica Destro; Damiano Cecchi; Barbara Ensoli; Roberto Manservigi; Antonella Caputo; Riccardo Gavioli; Peggy Marconi

Collaboration


Dive into the Elena Berto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara Ensoli

Istituto Superiore di Sanità

View shared research outputs
Researchain Logo
Decentralizing Knowledge