Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elena Besley is active.

Publication


Featured researches published by Elena Besley.


Journal of the American Chemical Society | 2016

Observation of Binding and Rotation of Methane and Hydrogen within a Functional Metal–Organic Framework

Mathew Savage; Ivan da Silva; Mark A. Johnson; Joseph H. Carter; Ruth Newby; Mikhail Suyetin; Elena Besley; Pascal Manuel; Svemir Rudić; Andrew N. Fitch; Claire A. Murray; William I. F. David; Sihai Yang; Martin Schröder

The key requirement for a portable store of natural gas is to maximize the amount of gas within the smallest possible space. The packing of methane (CH4) in a given storage medium at the highest possible density is, therefore, a highly desirable but challenging target. We report a microporous hydroxyl-decorated material, MFM-300(In) (MFM = Manchester Framework Material, replacing the NOTT designation), which displays a high volumetric uptake of 202 v/v at 298 K and 35 bar for CH4 and 488 v/v at 77 K and 20 bar for H2. Direct observation and quantification of the location, binding, and rotational modes of adsorbed CH4 and H2 molecules within this host have been achieved, using neutron diffraction and inelastic neutron scattering experiments, coupled with density functional theory (DFT) modeling. These complementary techniques reveal a very efficient packing of H2 and CH4 molecules within MFM-300(In), reminiscent of the condensed gas in pure component crystalline solids. We also report here, for the first time, the experimental observation of a direct binding interaction between adsorbed CH4 molecules and the hydroxyl groups within the pore of a material. This is different from the arrangement found in CH4/water clathrates, the CH4 store of nature.


Small | 2016

Investigation of the Interactions and Bonding between Carbon and Group VIII Metals at the Atomic Scale

Thilo Zoberbier; Thomas W. Chamberlain; Johannes Biskupek; Mikhail Suyetin; Alexander G. Majouga; Elena Besley; Ute Kaiser; Andrei N. Khlobystov

The nature and dynamics of bonding between Fe, Ru, Os, and single-walled carbon nanotubes (SWNTs) is studied by aberration-corrected high-resolution transmission electron microscopy (AC-HRTEM). The metals catalyze a wide variety of different transformations ranging from ejection of carbon atoms from the nanotube sidewall to the formation of hollow carbon shells or metal carbide within the SWNT, depending on the nature of the metal. The electron beam of AC-HRTEM serves the dual purpose of providing energy to the specimen and simultaneously enabling imaging of chemical transformations. Careful control of the electron beam parameters, energy, flux, and dose allowed direct comparison between the metals, demonstrating that their chemical reactions with SWNTs are determined by a balance between the cohesive energy of the metal particles and the strength of the metal-carbon σ- or π-bonds. The pathways of transformations of a given metal can be drastically changed by applying different electron energies (80, 40, or 20 keV), thus demonstrating AC-HRTEM as a new tool to direct and study chemical reactions. The understanding of interactions and bonding between SWNT and metals revealed by AC-HRTEM at the atomic level has important implications for nanotube-based electronic devices and catalysis.


Nature Chemistry | 2017

Supramolecular heterostructures formed by sequential epitaxial deposition of two-dimensional hydrogen-bonded arrays

Vladimir V. Korolkov; Matteo Baldoni; Kenji Watanabe; Takashi Taniguchi; Elena Besley; Peter H. Beton

Two-dimensional (2D) supramolecular arrays provide a route to the spatial control of the chemical functionality of a surface, but their deposition is in almost all cases limited to a monolayer termination. Here we investigated the sequential deposition of one 2D array on another to form a supramolecular heterostructure and realize the growth-normal to the underlying substrate-of distinct ordered layers, each of which is stabilized by in-plane hydrogen bonding. For heterostructures formed by depositing terephthalic acid or trimesic acid on cyanuric acid/melamine, we have determined, using atomic force microscopy under ambient conditions, a clear epitaxial arrangement despite the intrinsically distinct symmetries and/or lattice constants of each layer. Structures calculated using classical molecular dynamics are in excellent agreement with the orientation, registry and dimensions of the epitaxial layers. Calculations confirm that van der Waals interactions provide the dominant contribution to the adsorption energy and registry of the layers.


Journal of the American Chemical Society | 2016

Amides Do Not Always Work: Observation of Guest Binding in an Amide-Functionalized Porous Metal–Organic Framework

Oguarabau Benson; Ivan da Silva; Stephen P. Argent; Rafel Cabot; Mathew Savage; Harry G. W. Godfrey; Yong Yan; Stewart F. Parker; Pascal Manuel; Matthew J. Lennox; Tamoghna Mitra; Timothy L. Easun; William Lewis; Alexander J. Blake; Elena Besley; Sihai Yang; Martin Schröder

An amide-functionalized metal organic framework (MOF) material, MFM-136, shows a high CO2 uptake of 12.6 mmol g–1 at 20 bar and 298 K. MFM-136 is the first example of an acylamide pyrimidyl isophthalate MOF without open metal sites and, thus, provides a unique platform to study guest binding, particularly the role of free amides. Neutron diffraction reveals that, surprisingly, there is no direct binding between the adsorbed CO2/CH4 molecules and the pendant amide group in the pore. This observation has been confirmed unambiguously by inelastic neutron spectroscopy. This suggests that introduction of functional groups solely may not necessarily induce specific guest–host binding in porous materials, but it is a combination of pore size, geometry, and functional group that leads to enhanced gas adsorption properties.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Tailoring porosity and rotational dynamics in a series of octacarboxylate metal-organic frameworks

Florian Moreau; Daniil I. Kolokolov; Alexander G. Stepanov; Timothy L. Easun; Anne Dailly; William Lewis; Alexander J. Blake; Harriott Nowell; Matthew J. Lennox; Elena Besley; Sihai Yang; Martin Schröder

Significance A family of stable porous materials incorporating organic linkers and Cu(II) cations is reported. Their pores can be altered systematically by elongation of the ligands allowing a strategy of selective pore extension along one dimension. These materials show remarkable gas adsorption properties with high working capacities for CH4 (0.24 g g−1, 163 cm3 cm−3 at 298 K, 5–65 bar) for the most porous system. The mechanism of rotation of the organic groups in the solid state has been analyzed by NMR spectroscopy and rotational rates and transition temperatures analyzed. Significantly, we show that framework dynamics can be controlled by ligand design only, and this paves the way to understanding the role of molecular rotors within these materials. Modulation and precise control of porosity of metal-organic frameworks (MOFs) is of critical importance to their materials function. Here we report modulation of porosity for a series of isoreticular octacarboxylate MOFs, denoted MFM-180 to MFM-185, via a strategy of selective elongation of metal-organic cages. Owing to the high ligand connectivity, these MOFs do not show interpenetration, and are robust structures that have permanent porosity. Interestingly, activated MFM-185a shows a high Brunauer–Emmett–Teller (BET) surface area of 4,734 m2 g−1 for an octacarboxylate MOF. These MOFs show remarkable CH4 and CO2 adsorption properties, notably with simultaneously high gravimetric and volumetric deliverable CH4 capacities of 0.24 g g−1 and 163 vol/vol (298 K, 5–65 bar) recorded for MFM-185a due to selective elongation of tubular cages. The dynamics of molecular rotors in deuterated MFM-180a-d16 and MFM-181a-d16 were investigated by variable-temperature 2H solid-state NMR spectroscopy to reveal the reorientation mechanisms within these materials. Analysis of the flipping modes of the mobile phenyl groups, their rotational rates, and transition temperatures paves the way to controlling and understanding the role of molecular rotors through design of organic linkers within porous MOF materials.


Accounts of Chemical Research | 2017

Chemical Reactions of Molecules Promoted and Simultaneously Imaged by the Electron Beam in Transmission Electron Microscopy

Stephen T. Skowron; Thomas W. Chamberlain; Johannes Biskupek; Ute Kaiser; Elena Besley; Andrei N. Khlobystov

The main objective of this Account is to assess the challenges of transmission electron microscopy (TEM) of molecules, based on over 15 years of our work in this field, and to outline the opportunities in studying chemical reactions under the electron beam (e-beam). During TEM imaging of an individual molecule adsorbed on an atomically thin substrate, such as graphene or a carbon nanotube, the e-beam transfers kinetic energy to atoms of the molecule, displacing them from equilibrium positions. Impact of the e-beam triggers bond dissociation and various chemical reactions which can be imaged concurrently with their activation by the e-beam and can be presented as stop-frame movies. This experimental approach, which we term ChemTEM, harnesses energy transferred from the e-beam to the molecule via direct interactions with the atomic nuclei, enabling accurate predictions of bond dissociation events and control of the type and rate of chemical reactions. Elemental composition and structure of the reactant molecules as well as the operating conditions of TEM (particularly the energy of the e-beam) determine the product formed in ChemTEM processes, while the e-beam dose rate controls the reaction rate. Because the e-beam of TEM acts simultaneously as a source of energy for the reaction and as an imaging tool monitoring the same reaction, ChemTEM reveals atomic-level chemical information, such as pathways of reactions imaged for individual molecules, step-by-step and in real time; structures of illusive reaction intermediates; and direct comparison of catalytic activity of different transition metals filmed with atomic resolution. Chemical transformations in ChemTEM often lead to previously unforeseen products, demonstrating the potential of this method to become not only an analytical tool for studying reactions, but also a powerful instrument for discovery of materials that can be synthesized on preparative scale.


Journal of Chemical Physics | 2016

Electrostatic interactions between charged dielectric particles in an electrolyte solution.

I. N. Derbenev; Anatoly V. Filippov; Anthony J. Stace; Elena Besley

Theory is developed to address a significant problem of how two charged dielectric particles interact in the presence of a polarizable medium that is a dilute solution of a strong electrolyte. The electrostatic force is defined by characteristic parameters for the interacting particles (charge, radius, and dielectric constant) and for the medium (permittivity and Debye length), and is expressed in the form of a converging infinite series. The limiting case of weak screening and large inter-particle separation is considered, which corresponds to small (macro)ions that carry constant charge. The theory yields a solution in the limit of monopole and dipole terms that agrees exactly with existing analytical expressions, which are generally used to describe ion-ion and ion-molecular interactions in a medium. Results from the theory are compared with DLVO theory and with experimental measurements for the electrostatic force between two PMMA particles contained in a nonpolar solvent (hexadecane) with an added charge control agent.


Philosophical Transactions of the Royal Society A | 2018

Dynamic simulations of many-body electrostatic self-assembly

Eric B. Lindgren; Benjamin Stamm; Yvon Maday; Elena Besley; Anthony J. Stace

Two experimental studies relating to electrostatic self-assembly have been the subject of dynamic computer simulations, where the consequences of changing the charge and the dielectric constant of the materials concerned have been explored. One series of calculations relates to experiments on the assembly of polymer particles that have been subjected to tribocharging and the simulations successfully reproduce many of the observed patterns of behaviour. A second study explores events observed following collisions between single particles and small clusters composed of charged particles derived from a metal oxide composite. As before, observations recorded during the course of the experiments are reproduced by the calculations. One study in particular reveals how particle polarizability can influence the assembly process. This article is part of the theme issue ‘Modern theoretical chemistry’.


Molecular Simulation | 2017

The right isotherms for the right reasons?: validation of generic force fields for prediction of methane adsorption in metal-organic frameworks

Matthew J. Lennox; Michelle Bound; Alice Henley; Elena Besley

Abstract In recent years, the use of computational tools to aid in the evaluation, understanding and design of advanced porous materials for gas storage and separation processes has become evermore widespread. High-performance computing facilities have become more powerful and more accessible and molecular simulation of gas adsorption has become routine, often involving the use of a number of default and commonly used parameters as a result. In this work, we consider the application of molecular simulation in one particular field of adsorption – the prediction of methane adsorption in metal-organic frameworks in the low loading regime – and employ a range of computational techniques to evaluate the appropriateness of many commonly chosen simulation parameters to these systems. In addition to confirming the power of relatively simple generic force fields to quickly and accurately predict methane adsorption isotherms in a range of MOFs, we demonstrate that these force fields are capable of providing detailed molecular-level information which is in very good agreement with quantum chemical predictions. We highlight a number of chemical systems in which molecular-level insight from generic force fields should be approached with a degree of caution and provide some general recommendations for best practice in simulations of CH4 adsorption in MOFs.


Chemistry: A European Journal | 2016

Direct Measurement of Electron Transfer in Nanoscale Host-Guest Systems: Metallocenes in Carbon Nanotubes.

Robert L. McSweeney; Thomas W. Chamberlain; Matteo Baldoni; Maria A. Lebedeva; E. Stephen Davies; Elena Besley; Andrei N. Khlobystov

Electron-transfer processes play a significant role in host-guest interactions and determine physicochemical phenomena emerging at the nanoscale that can be harnessed in electronic or optical devices, as well as biochemical and catalytic systems. A novel method for qualifying and quantifying the electronic doping of single walled carbon nanotubes (SWNTs) using electrochemistry has been developed that establishes a direct link between these experimental measurements and ab initio DFT calculations. Metallocenes such as cobaltocene and methylated ferrocene derivatives were encapsulated inside SWNTs (1.4 nm diameter) and cyclic voltammetry (CV) was performed on the resultant host-guest systems. The electron transfer between the guest molecules and the host SWNTs is measured as a function of shift in the redox potential (E1/2 ) of Co(II) /Co(I) , Co(III) /Co(II) and Fe(III) /Fe(II) . Furthermore, the shift in E1/2 is inversely proportional to the nanotube diameter. To quantify the amount of electron transfer from the guest molecules to the SWNTs, a novel method using coulometry was developed, allowing the mapping of the density of states and the Fermi level of the SWNTs. Correlated with theoretical calculations, coulometry provides an accurate indication of n/p-doping of the SWNTs.

Collaboration


Dive into the Elena Besley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sihai Yang

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Ivan da Silva

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mathew Savage

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Pascal Manuel

Rutherford Appleton Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruth Newby

University of Nottingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge