Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elena Biagi is active.

Publication


Featured researches published by Elena Biagi.


Nature Communications | 2014

Gut microbiome of the Hadza hunter-gatherers.

Stephanie L. Schnorr; Marco Candela; Simone Rampelli; Manuela Centanni; Clarissa Consolandi; Giulia Basaglia; Silvia Turroni; Elena Biagi; Clelia Peano; Marco Severgnini; Jessica Fiori; Roberto Gotti; Gianluca De Bellis; Donata Luiselli; Patrizia Brigidi; Audax Mabulla; Frank W. Marlowe; Amanda G. Henry; Alyssa N. Crittenden

Human gut microbiota directly influences health and provides an extra means of adaptive potential to different lifestyles. To explore variation in gut microbiota and to understand how these bacteria may have co-evolved with humans, here we investigate the phylogenetic diversity and metabolite production of the gut microbiota from a community of human hunter-gatherers, the Hadza of Tanzania. We show that the Hadza have higher levels of microbial richness and biodiversity than Italian urban controls. Further comparisons with two rural farming African groups illustrate other features unique to Hadza that can be linked to a foraging lifestyle. These include absence of Bifidobacterium and differences in microbial composition between the sexes that probably reflect sexual division of labour. Furthermore, enrichment in Prevotella, Treponema and unclassified Bacteroidetes, as well as a peculiar arrangement of Clostridiales taxa, may enhance the Hadza’s ability to digest and extract valuable nutrition from fibrous plant foods.


Age | 2012

Ageing of the human metaorganism: the microbial counterpart

Elena Biagi; Marco Candela; Susan J. Fairweather-Tait; Claudio Franceschi; Patrizia Brigidi

Human beings have been recently reviewed as ‘metaorganisms’ as a result of a close symbiotic relationship with the intestinal microbiota. This assumption imposes a more holistic view of the ageing process where dynamics of the interaction between environment, intestinal microbiota and host must be taken into consideration. Age-related physiological changes in the gastrointestinal tract, as well as modification in lifestyle, nutritional behaviour, and functionality of the host immune system, inevitably affect the gut microbial ecosystem. Here we review the current knowledge of the changes occurring in the gut microbiota of old people, especially in the light of the most recent applications of the modern molecular characterisation techniques. The hypothetical involvement of the age-related gut microbiota unbalances in the inflamm-aging, and immunosenescence processes will also be discussed. Increasing evidence of the importance of the gut microbiota homeostasis for the host health has led to the consideration of medical/nutritional applications of this knowledge through the development of probiotic and prebiotic preparations specific for the aged population. The results of the few intervention trials reporting the use of pro/prebiotics in clinical conditions typical of the elderly will be critically reviewed.


Applied and Environmental Microbiology | 2007

Dynamics of Vaginal Bacterial Communities in Women Developing Bacterial Vaginosis, Candidiasis, or No Infection, Analyzed by PCR-Denaturing Gradient Gel Electrophoresis and Real-Time PCR

Beatrice Vitali; Ciro Pugliese; Elena Biagi; Marco Candela; Silvia Turroni; Gert Bellen; Gilbert Donders; Patrizia Brigidi

ABSTRACT The microbial flora of the vagina plays a major role in preventing genital infections, including bacterial vaginosis (BV) and candidiasis (CA). An integrated approach based on PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR was used to study the structure and dynamics of bacterial communities in vaginal fluids of healthy women and patients developing BV and CA. Universal eubacterial primers and Lactobacillus genus-specific primers, both targeted at 16S rRNA genes, were used in DGGE and real-time PCR analysis, respectively. The DGGE profiles revealed that the vaginal flora was dominated by Lactobacillus species under healthy conditions, whereas several potentially pathogenic bacteria were present in the flora of women with BV. Lactobacilli were the predominant bacterial population in the vagina for patients affected by CA, but changes in the composition of Lactobacillus species were observed. Real-time PCR analysis allowed the quantitative estimation of variations in lactobacilli associated with BV and CA diseases. A statistically significant decrease in the relative abundance of lactobacilli was found in vaginal fluids of patients with BV compared to the relative abundance of lactobacilli in the vaginal fluids of healthy women and patients with CA.


Microbiology | 2009

Bifidobacterial enolase, a cell surface receptor for human plasminogen involved in the interaction with the host.

Marco Candela; Elena Biagi; Manuela Centanni; Silvia Turroni; Manuela Vici; Francesco Musiani; Beatrice Vitali; Simone Bergmann; Sven Hammerschmidt; Patrizia Brigidi

The interaction with the host plasminogen/plasmin system represents a novel component in the molecular cross-talk between bifidobacteria and human host. Here, we demonstrated that the plasminogen-binding bifidobacterial species B. longum, B. bifidum, B. breve and B. lactis share the key glycolytic enzyme enolase as a surface receptor for human plasminogen. Enolase was visualized on the cell surface of the model strain B. lactis BI07. The His-tagged recombinant protein showed a high affinity for human plasminogen, with an equilibrium dissociation constant in the nanomolar range. By site-directed mutagenesis we demonstrated that the interaction between the B. lactis BI07 enolase and human plasminogen involves an internal plasminogen-binding site homologous to that of pneumococcal enolase. According to our data, the positively charged residues Lys-251 and Lys-255, as well as the negatively charged Glu-252, of the B. lactis BI07 enolase are crucial for plasminogen binding. Acting as a human plasminogen receptor, the bifidobacterial surface enolase is suggested to play an important role in the interaction process with the host.


Microbiology | 2010

DnaK from Bifidobacterium animalis subsp. lactis is a surface-exposed human plasminogen receptor upregulated in response to bile salts.

Marco Candela; Manuela Centanni; Jessica Fiori; Elena Biagi; Silvia Turroni; Catia Orrico; Simone Bergmann; Sven Hammerschmidt; Patrizia Brigidi

Bifidobacterium animalis subsp. lactis lives in the gastrointestinal tract of most mammals, including humans. Recently, for the probiotic strain B. animalis subsp. lactis BI07, a dose-dependent plasminogen-binding activity was demonstrated and five putative plasminogen-binding proteins were identified. Here we investigated the role of surface DnaK as a B. animalis subsp. lactis BI07 plasminogen receptor. DnaK was visualized on the bacterial cell surface by transmission electron microscopy. The His-tagged recombinant DnaK protein showed a high affinity for human plasminogen, with an equilibrium dissociation constant in the nanomolar range. The capability to tolerate physiological concentrations of bile salts is a crucial feature for an intestinal symbiont micro-organism. By proteome analysis we demonstrated that the long-term exposure of B. animalis subsp. lactis BI07 to bile salts results in the upregulation of important surface plasminogen receptors such as DnaK and enolase. Moreover, adaptation of B. animalis subsp. lactis BI07 to physiological concentrations of bile salts significantly increased its capacity to interact with the host plasminogen system. By enhancing the bacterial capacity to interact with the host plasminogen, the gut bile environment may facilitate the colonization of the human host by B. animalis subsp. lactis BI07.


World Journal of Gastroenterology | 2014

Inflammation and colorectal cancer, when microbiota-host mutualism breaks

Marco Candela; Silvia Turroni; Elena Biagi; Franck Carbonero; Simone Rampelli; Carla Fiorentini; Patrizia Brigidi

Structural changes in the gut microbial community have been shown to accompany the progressive development of colorectal cancer. In this review we discuss recent hypotheses on the mechanisms involved in the bacteria-mediated carcinogenesis, as well as the triggering factors favoring the shift of the gut microbiota from a mutualistic to a pro-carcinogenic configuration. The possible role of inflammation, bacterial toxins and toxic microbiota metabolites in colorectal cancer onset is specifically discussed. On the other hand, the strategic role of inflammation as the keystone factor in driving microbiota to become carcinogenic is suggested. As a common outcome of different environmental and endogenous triggers, such as diet, aging, pathogen infection or genetic predisposition, inflammation can compromise the microbiota-host mutualism, forcing the increase of pathobionts at the expense of health-promoting groups, and allowing the microbiota to acquire an overall pro-inflammatory configuration. Consolidating inflammation in the gut, and favoring the bloom of toxigenic bacterial drivers, these changes in the gut microbial ecosystem have been suggested as pivotal in promoting carcinogenesis. In this context, it will become of primary importance to implement dietary or probiotics-based interventions aimed at preserving the microbiota-host mutualism along aging, counteracting deviations that favor a pro-carcinogenic microbiota asset.


Autoimmunity Reviews | 2015

Behçet's syndrome patients exhibit specific microbiome signature

Clarissa Consolandi; Silvia Turroni; Giacomo Emmi; Marco Severgnini; Jessica Fiori; Clelia Peano; Elena Biagi; Alessia Grassi; Simone Rampelli; Elena Silvestri; Manuela Centanni; Fabio Cianchi; Roberto Gotti; Lorenzo Emmi; Patrizia Brigidi; Nicola Bizzaro; Gianluca De Bellis; Domenico Prisco; Marco Candela; Mario M. D'Elios

BACKGROUND AND AIMS Behçet syndrome is a systemic inflammatory condition characterized by muco-cutaneous and ocular manifestations, with central nervous system, vascular and/or gastro-intestinal involvement. The association of microbiota with Behçet syndrome has not been shown yet. Our work was aimed to compare the gut microbiota structure and the profiles of short-chain fatty acids production in Behçet syndrome patients and healthy control relatives. METHODS Here, we compared the fecal microbiota of 22 patients with Behçet syndrome and that of 16 healthy co-habiting controls, sharing the same diet and lifestyle by pyrosequencing of the V3-V4 hypervariable regions of the 16 rDNA gene and biochemical analyses. RESULTS Our analyses showed significant differences in gut microbiota between Behçet patients and healthy cohabitants. In particular we found that Behçets patients were significantly depleted in the genera Roseburia and Subdoligranulum. Roseburia showed a relative abundance value of 10.45±6.01% in healthy relatives and 4.97±5.09% in Behçets patients, and Subdoligranulum, which reached a relative abundance of 3.28±2.20% in healthy controls, was only at 1.93±1.75% of abundance in Behçets patients. Here we report, for the first time, that a peculiar dysbiosis of the gut microbiota is present in patients with Behçet syndrome and this corresponds to specific changes in microbiome profile. A significant decrease of butyrate production (P=0.0033) in Behçets patients was demonstrated. Butyrate is able to promote differentiation of T-regulatory cells, and consequently the results obtained prompt us to speculate that a defect of butyrate production might lead to both reduced T-reg responses and activation of immuno-pathological T-effector responses. CONCLUSIONS Altogether, our results indicate that both a peculiar dysbiosis of the gut microbiota and a significant decrease of butyrate production are present in patients with Behçet syndrome.


Trends in Microbiology | 2012

Intestinal microbiota is a plastic factor responding to environmental changes

Marco Candela; Elena Biagi; Simone Maccaferri; Silvia Turroni; Patrizia Brigidi

Traditionally regarded as stable through the entire lifespan, the intestinal microbiota has now emerged as an extremely plastic entity, capable of being reconfigured in response to different environmental factors. In a mutualistic context, these microbiome fluctuations allow the host to rapidly adjust its metabolic and immunologic performances in response to environmental changes. Several circumstances can disturb this homeostatic equilibrium, inducing the intestinal microbiota to shift from a mutualistic configuration to a disease-associated profile. A mechanistic comprehension of the dynamics involved in this process is needed to deal more rationally with the role of the human intestinal microbiota in health and disease.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2001

Efficient laser-ultrasound generation by using heavily absorbing films as targets

Elena Biagi; Fabrizio Margheri; D. Menichelli

An efficient all-fiber optic source is presented; it adopts absorbing films, deposed directly over the fiber tip, as targets. It is demonstrated that the use of absorbing films made of pure graphite, or graphite powder mixed with epoxy resin, has produced a conversion efficiency increase of two orders of magnitude with respect to metallic materials. It is observed that the conversion efficiency increases monotonically as thickness is reduced down to the material optical penetration depth. Moreover, the conversion efficiency rises with the concentration of graphite powder. Principal advantages of this kind of source are the ease of production and miniaturization, the excellent electromagnetic compatibility, wide ultrasonic bandwidth and, consequently, high spatial resolution. The ultrasonic bandwidth can be controlled by varying the laser pulse duration. The possibility of generating ultrasonic signals with high frequency and flat spectral distribution makes the proposed device suitable for biological tissue spectral characterization.


Scientific Reports | 2015

The effect of short-chain fatty acids on human monocyte-derived dendritic cells

Claudia Nastasi; Marco Candela; Charlotte M. Bonefeld; Carsten Geisler; Morten Hartvig Hansen; Thorbjørn Krejsgaard; Elena Biagi; Mads Hald Andersen; Patrizia Brigidi; Niels Ødum; Thomas Litman; Anders Woetmann

The gut microbiota is essential for human health and plays an important role in the pathogenesis of several diseases. Short-chain fatty acids (SCFA), such as acetate, butyrate and propionate, are end-products of microbial fermentation of macronutrients that distribute systemically via the blood. The aim of this study was to investigate the transcriptional response of immature and LPS-matured human monocyte-derived DC to SCFA. Our data revealed distinct effects exerted by each individual SCFA on gene expression in human monocyte-derived DC, especially in the mature ones. Acetate only exerted negligible effects, while both butyrate and propionate strongly modulated gene expression in both immature and mature human monocyte-derived DC. An Ingenuity pathway analysis based on the differentially expressed genes suggested that propionate and butyrate modulate leukocyte trafficking, as SCFA strongly reduced the release of several pro-inflammatory chemokines including CCL3, CCL4, CCL5, CXCL9, CXCL10, and CXCL11. Additionally, butyrate and propionate inhibited the expression of lipopolysaccharide (LPS)-induced cytokines such as IL-6 and IL-12p40 showing a strong anti-inflammatory effect. This work illustrates that bacterial metabolites far from the site of their production can differentially modulate the inflammatory response and generally provides new insights into host-microbiome interactions.

Collaboration


Dive into the Elena Biagi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge