Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elena Bonora is active.

Publication


Featured researches published by Elena Bonora.


Gastroenterology | 2015

Mutations in RAD21 Disrupt Regulation of APOB in Patients With Chronic Intestinal Pseudo-Obstruction

Elena Bonora; Francesca Bianco; Lina Cordeddu; Michael J. Bamshad; Ludmila Francescatto; Dustin Dowless; Vincenzo Stanghellini; Rosanna Cogliandro; Greger Lindberg; Zeynel Mungan; Kivanc Cefle; Tayfun Ozcelik; Sukru Palanduz; Sukru Ozturk; Asuman Gedikbasi; Alessandra Gori; Tommaso Pippucci; Claudio Graziano; Umberto Volta; Giacomo Caio; Giovanni Barbara; Mauro D'Amato; Marco Seri; Nicholas Katsanis; Giovanni Romeo; Roberto De Giorgio

BACKGROUND & AIMSnChronic intestinal pseudo-obstruction (CIPO) is characterized by severe intestinal dysmotility that mimics a mechanical subocclusion with noxa0evidence of gut obstruction. We searched for genetic variants associated with CIPO to increase our understanding of its pathogenesis and to identify potential biomarkers.nnnMETHODSnWe performed whole-exome sequencing of genomic DNA from patients with familial CIPO syndrome. Blood and lymphoblastoid cells were collected from patients and controls (individuals without CIPO); levels of messenger RNA (mRNA) and proteins were analyzed by quantitative reverse-transcription polymerase chain reaction, immunoblot, and mobility shift assays. Complementary DNAs were transfected into HEK293 cells. Expression of rad21 was suppressed in zebrafish embryos using a splice-blocking morpholino (rad21a). Gut tissues were collected and analyzed.nnnRESULTSnWe identified a homozygous mutation (p.622, encodes Ala>Thr) in RAD21 in patients from a consanguineous family with CIPO. Expression of RUNX1, a target of RAD21, was reduced in cells from patients with CIPO compared with controls. In zebrafish, suppression of rad21a reduced expression of runx1; this phenotype was corrected by injection of human RAD21 mRNA, but not with the mRNA from the mutated p.622 allele. rad21a Morpholino zebrafish had delayed intestinal transit and greatly reduced numbers of enteric neurons, similar to patients with CIPO. This defect was greater in zebrafish with suppressed expression of ret and rad21, indicating their interaction in the regulation of gut neurogenesis. The promoter region of APOB bound RAD21 but not RAD21 p.622 Ala>Thr; expression of wild-type RAD21 in HEK293 cells repressed expression of APOB, compared with control vector. The gut-specific isoform of APOB (APOB48) is overexpressed in sera from patients with CIPO who carry the RAD21 mutation. APOB48 also is overexpressed in sporadic CIPO in sera and gut biopsy specimens.nnnCONCLUSIONSnSome patients with CIPO carry mutations in RAD21 that disrupt the ability of its product to regulate genes such as RUNX1 and APOB. Reduced expression of rad21 in zebrafish, and dysregulation of these target genes, disrupts intestinal transit and the development of enteric neurons.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2016

Prucalopride exerts neuroprotection in human enteric neurons

Francesca Bianco; Elena Bonora; Dipa Natarajan; Manuela Vargiolu; Nikhil Thapar; Francesco Torresan; Fiorella Giancola; Elisa Boschetti; Umberto Volta; Franco Bazzoli; Maurizio Mazzoni; Marco Seri; Paolo Clavenzani; Vincenzo Stanghellini; Catia Sternini; Roberto De Giorgio

Serotonin (5-hydroxytryptamine, 5-HT) and its transporters and receptors are involved in a wide array of digestive functions. In particular, 5-HT4 receptors are known to mediate intestinal peristalsis and recent data in experimental animals have shown their role in neuronal maintenance and neurogenesis. This study has been designed to test whether prucalopride, a well-known full 5-HT4 agonist, exerts protective effects on neurons, including enteric neurons, exposed to oxidative stress challenge. Sulforhodamine B assay was used to determine the survival of SH-SY5Y cells, human enteric neurospheres, and ex vivo submucosal neurons following H2O2 exposure in the presence or absence of prucalopride (1 nM). Specificity of 5-HT4-mediated neuroprotection was established by experiments performed in the presence of GR113808, a 5-HT4 antagonist. Prucalopride exhibited a significant neuroprotective effect. SH-SY5Y cells pretreated with prucalopride were protected from the injury elicited by H2O2 as shown by increased survival (73.5 ± 0.1% of neuronal survival vs. 33.3 ± 0.1%, respectively; P < 0.0001) and a significant reduction of proapoptotic caspase-3 and caspase-9 activation in all neurons tested. The protective effect of prucalopride was reversed by the specific 5-HT4 antagonist GR113808. Prucalopride promotes a significant neuroprotection against oxidative-mediated proapoptotic mechanisms. Our data pave the way for novel therapeutic implications of full 5-HT4 agonists in gut dysmotility characterized by neuronal degeneration, which go beyond the well-known enterokinetic effect.


Gastroenterology | 2016

Protective Actions of Epithelial 5-hydroxytryptamine 4 Receptors in Normal and Inflamed Colon.

Stephanie N. Spohn; Francesca Bianco; Rachel Scott; Catherine M. Keenan; Alisha A. Linton; Conor H. O'Neill; Elena Bonora; Michael Dicay; Brigitte Lavoie; Rebecca Wilcox; Wallace K. MacNaughton; Roberto De Giorgio; Keith A. Sharkey; Gary M. Mawe

BACKGROUND & AIMSnThe 5-hydroxytryptamine receptor 4 (5-HT4R or HTR4) is expressed in the colonic epithelium but little is known about its functions there. We examined whether activation of colonic epithelial 5-HT4R protects colons of mice from inflammation.nnnMETHODSnThe 5-HT4R agonist tegaserod (1 mg/kg), the 5-HT4R antagonist GR113808 (1 mg/kg), or vehicle (control) were delivered by enema to wild-type or 5-HT4R knockout mice at the onset of, or during, active colitis, induced by administration of dextran sodium sulfate or trinitrobenzene sulfonic acid. Inflammation was measured using the colitis disease activity index and by histologic analysis of intestinal tissues. Epithelial proliferation, wound healing, and resistance to oxidative stress-induced apoptosis were assessed, as was colonic motility.nnnRESULTSnRectal administration of tegaserod reduced the severity of colitis compared with mice given vehicle, and accelerated recovery from active colitis. Rectal tegaserod did not improve colitis in 5-HT4R knockout mice, and intraperitoneally administered tegaserod did not protect wild-type mice from colitis. Tegaserod increased proliferation of crypt epithelial cells. Stimulation of 5-HT4R increased Caco-2 cell migration and reduced oxidative stress-induced apoptosis; these actions were blocked by co-administration of the 5-HT4R antagonist GR113808. In noninflamed colons of wild-type mice not receiving tegaserod, inhibition of 5-HT4Rs resulted in signs of colitis within 3 days. In these mice, epithelial proliferation decreased and bacterial translocation to the liver and spleen was detected. Daily administration of tegaserod increased motility in inflamed colons of guinea pigs and mice, whereas administration of GR113808 disrupted motility in animals without colitis.nnnCONCLUSIONSn5-HT4R activation maintains motility in healthy colons of mice and guinea pigs, and reduces inflammation in colons of mice with colitis. Agonists might be developed as treatments for patients with inflammatory bowel diseases.


Human Molecular Genetics | 2015

HCFC1 loss-of-function mutations disrupt neuronal and neural progenitor cells of the developing brain

Lachlan A. Jolly; Lam Son Nguyen; Deepti Domingo; Ying Sun; Simon C. Barry; Miroslava Hancarova; Pavlina Plevova; Marketa Vlckova; Marketa Havlovicova; Vera M. Kalscheuer; Claudio Graziano; Tommaso Pippucci; Elena Bonora; Zdenek Sedlacek; Jozef Gecz

Both gain- and loss-of-function mutations have recently implicated HCFC1 in neurodevelopmental disorders. Here, we extend our previous HCFC1 over-expression studies by employing short hairpin RNA to reduce the expression of Hcfc1 in embryonic neural cells. We show that in contrast to over-expression, loss of Hcfc1 favoured proliferation of neural progenitor cells at the expense of differentiation and promoted axonal growth of post-mitotic neurons. To further support the involvement of HCFC1 in neurological disorders, we report two novel HCFC1 missense variants found in individuals with intellectual disability (ID). One of these variants, together with three previously reported HCFC1 missense variants of unknown pathogenicity, were functionally assessed using multiple cell-based assays. We show that three out of the four variants tested result in a partial loss of HCFC1 function. While over-expression of the wild-type HCFC1 caused reduction in HEK293T cell proliferation and axonal growth of neurons, these effects were alleviated upon over-expression of three of the four HCFC1 variants tested. One of these partial loss-of-function variants disrupted a nuclear localization sequence and the resulting protein displayed reduced ability to localize to the cell nucleus. The other two variants displayed negative effects on the expression of the HCFC1 target gene MMACHC, which is responsible for the metabolism of cobalamin, suggesting that these individuals may also be susceptible to cobalamin deficiency. Together, our work identifies plausible cellular consequences of missense HCFC1 variants and identifies likely and relevant disease mechanisms that converge on embryonic stages of brain development.


PLOS ONE | 2016

Expression of the Bitter Taste Receptor, T2R38, in Enteroendocrine Cells of the Colonic Mucosa of Overweight/Obese vs. Lean Subjects

Rocco Latorre; Jennifer Huynh; Maurizio Mazzoni; Arpana Gupta; Elena Bonora; Paolo Clavenzani; Lin Chang; Emeran A. Mayer; Roberto De Giorgio; Catia Sternini

Bitter taste receptors (T2Rs) are expressed in the mammalian gastrointestinal mucosa. In the mouse colon, T2R138 is localized to enteroendocrine cells and is upregulated by long-term high fat diet that induces obesity. The aims of this study were to test whether T2R38 expression is altered in overweight/obese (OW/OB) compared to normal weight (NW) subjects and characterize the cell types expressing T2R38, the human counterpart of mouse T2R138, in human colon. Colonic mucosal biopsies were obtained during colonoscopy from 35 healthy subjects (20 OW/OB and 15 NW) and processed for quantitative RT-PCR and immunohistochemistry using antibodies to T2R38, chromogranin A (CgA), glucagon like peptide-1 (GLP-1), cholecystokinin (CCK), or peptide YY (PYY). T2R38 mRNA levels in the colonic mucosa of OW/OB were increased (> 2 fold) compared to NW subjects but did not reach statistical significance (P = 0.06). However, the number of T2R38 immunoreactive (IR) cells was significantly increased in OW/OB vs. NW subjects (P = 0.01) and was significantly correlated with BMI values (r = 0.7557; P = 0.001). In both OW/OB and NW individuals, all T2R38-IR cells contained CgA-IR supporting they are enteroendocrine. In both groups, T2R38-IR colocalized with CCK-, GLP1- or PYY-IR. The overall CgA-IR cell population was comparable in OW/OB and NW individuals. This study shows that T2R38 is expressed in distinct populations of enteroendocrine cells in the human colonic mucosa and supports T2R38 upregulation in OW/OB subjects. T2R38 might mediate host functional responses to increased energy balance and intraluminal changes occurring in obesity, which could involve peptide release from enteroendocrine cells.


BMC Cancer | 2015

A mutation screening of oncogenes, tumor suppressor gene TP53 and nuclear encoded mitochondrial complex I genes in oncocytic thyroid tumors

Cecilia Evangelisti; Dario de Biase; Ivana Kurelac; Claudio Ceccarelli; Holger Prokisch; Thomas Meitinger; Paola Caria; Roberta Vanni; Giovanni Romeo; Giovanni Tallini; Giuseppe Gasparre; Elena Bonora

BackgroundThyroid neoplasias with oncocytic features represent a specific phenotype in non-medullary thyroid cancer, reflecting the unique biological phenomenon of mitochondrial hyperplasia in the cytoplasm. Oncocytic thyroid cells are characterized by a prominent eosinophilia (or oxyphilia) caused by mitochondrial abundance. Although disruptive mutations in the mitochondrial DNA (mtDNA) are the most significant hallmark of such tumors, oncocytomas may be envisioned as heterogeneous neoplasms, characterized by multiple nuclear and mitochondrial gene lesions. We investigated the nuclear mutational profile of oncocytic tumors to pinpoint the mutations that may trigger the early oncogenic hit.MethodsTotal DNA was extracted from paraffin-embedded tissues from 45 biopsies of oncocytic tumors. High-resolution melting was used for mutation screening of mitochondrial complex I subunits genes. Specific nuclear rearrangements were investigated by RT-PCR (RET/PTC) or on isolated nuclei by interphase FISH (PAX8/PPARγ). Recurrent point mutations were analyzed by direct sequencing.ResultsIn our oncocytic tumor samples, we identified rare TP53 mutations. The series of analyzed cases did not include poorly- or undifferentiated thyroid carcinomas, and none of the TP53 mutated cases had significant mitotic activity or high-grade features. Thus, the presence of disruptive TP53 mutations was completely unexpected. In addition, novel mutations in nuclear-encoded complex I genes were identified.ConclusionsThese findings suggest that nuclear genetic lesions altering the bioenergetics competence of thyroid cells may give rise to an aberrant mitochondria-centered compensatory mechanism and ultimately to the oncocytic phenotype.


Gene | 2015

Syndromic intellectual disability: A new phenotype caused by an aromatic amino acid decarboxylase gene (DDC) variant

Claudio Graziano; Anita Wischmeijer; Tommaso Pippucci; Carlo Fusco; Chiara Diquigiovanni; Margit Nõukas; Martin Sauk; Ants Kurg; Francesca Rivieri; Nenad Blau; Georg F. Hoffmann; Alka Chaubey; Charles E. Schwartz; Giovanni Romeo; Elena Bonora; Livia Garavelli; Marco Seri

The causative variant in a consanguineous family in which the three patients (two siblings and a cousin) presented with intellectual disability, Marfanoid habitus, craniofacial dysmorphisms, chronic diarrhea and progressive kyphoscoliosis, has been identified through whole exome sequencing (WES) analysis. WES study identified a homozygous DDC variant in the patients, c.1123C>T, resulting in p.Arg375Cys missense substitution. Mutations in DDC cause a recessive metabolic disorder (aromatic amino acid decarboxylase, AADC, deficiency, OMIM #608643) characterized by hypotonia, oculogyric crises, excessive sweating, temperature instability, dystonia, severe neurologic dysfunction in infancy, and specific abnormalities of neurotransmitters and their metabolites in the cerebrospinal fluid (CSF). In our family, analysis of neurotransmitters and their metabolites in patients CSF shows a pattern compatible with AADC deficiency, although the clinical signs are different from the classic form. Our work expands the phenotypic spectrum associated with DDC variants, which therefore can cause an additional novel syndrome without typical movement abnormalities.


Schizophrenia Research and Treatment | 2016

Neuroactive Steroids in First-Episode Psychosis: A Role for Progesterone?

Martino Belvederi Murri; Flaminia Fanelli; Uberto Pagotto; Elena Bonora; Federico Triolo; Luigi Chiri; Fabio Allegri; Marco Mezzullo; Marco Menchetti; Valeria Mondelli; Carmine M. Pariante; Domenico Berardi; Ilaria Tarricone

Neuroactive steroids may play a role in the pathophysiology of psychotic disorders, but few studies examined this issue. We compared serum levels of cortisol, testosterone, dehydroepiandrosterone, and progesterone between a representative sample of first-episode psychosis (FEP) patients and age- and gender-matched healthy subjects. Furthermore, we analyzed the associations between neuroactive steroids levels and the severity of psychotic symptom dimensions. Male patients had lower levels of progesterone than controls (p = 0.03). Progesterone levels were inversely associated with the severity of positive symptoms (p = 0.007). Consistent with preclinical findings, results suggest that progesterone might have a role in the pathophysiology of psychotic disorders.


Advances in Experimental Medicine and Biology | 2016

Enteric neuropathies: Yesterday, Today and Tomorrow

Roberto De Giorgio; Francesca Bianco; Rocco Latorre; Giacomo Caio; Paolo Clavenzani; Elena Bonora

Enteric neuropathy is a term indicating an impairment of the innervation supplying the gastrointestinal tract. The clinical phenotypes of the enteric neuropathies are the tip of the iceberg of severe functional digestive diseases, such as intestinal pseudo-obstruction syndromes (e.g., chronic intestinal pseudo-obstruction). Despite progress acquired over the years, the pathogenetic mechanisms leading to enteric neuropathies are still far from being elucidated and the therapeutic approaches to these patients are mainly supportive, rather than curative.The purpose of this chapter is to review the advancements that have been done in the knowledge of enteric neuropathies identified in adult patients (tomorrow), going through where we currently are (today) following a brief history of the major milestones on the pioneering discoveries in the field (yesterday).


European Journal of Human Genetics | 2018

Somatic APC mosaicism and oligogenic inheritance in genetically unsolved colorectal adenomatous polyposis patients

Michele Ciavarella; Sara Miccoli; Anna Prossomariti; Tommaso Pippucci; Elena Bonora; Francesco Buscherini; Flavia Palombo; Roberta Zuntini; Tiziana Balbi; Claudio Ceccarelli; Franco Bazzoli; Luigi Ricciardiello; Daniela Turchetti; Giulia Piazzi

Germline variants in the APC gene cause familial adenomatous polyposis. Inherited variants in MutYH, POLE, POLD1, NTHL1, and MSH3 genes and somatic APC mosaicism have been reported as alternative causes of polyposis. However, ~30–50% of cases of polyposis remain genetically unsolved. Thus, the aim of this study was to investigate the genetic causes of unexplained adenomatous polyposis. Eight sporadic cases with >20 adenomatous polyps by 35 years of age or >50 adenomatous polyps by 55 years of age, and no causative germline variants in APC and/or MutYH, were enrolled from a cohort of 56 subjects with adenomatous colorectal polyposis. APC gene mosaicism was investigated on DNA from colonic adenomas by Sanger sequencing or Whole Exome Sequencing (WES). Mosaicism extension to other tissues (peripheral blood, saliva, hair follicles) was evaluated using Sanger sequencing and/or digital PCR. APC second hit was investigated in adenomas from mosaic patients. WES was performed on DNA from peripheral blood to identify additional polyposis candidate variants. We identified APC mosaicism in 50% of patients. In three casesxa0mosaicism was restricted to the colon, while in one it also extended to the duodenum and saliva. One patient without APC mosaicism, carrying an APC in-frame deletion of uncertain significance, was found to harbor rare germline variants in OGG1, POLQ, and EXO1 genes. In conclusion, our restrictive selection criteria improved the detection of mosaic APC patients. In addition, we showed for the first time that an oligogenic inheritance of rare variants might have a cooperative role in sporadic colorectal polyposis onset.

Collaboration


Dive into the Elena Bonora's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge