Elena Colicino
Columbia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elena Colicino.
Genome Biology | 2015
Riccardo E. Marioni; Sonia Shah; Allan F. McRae; Brian H. Chen; Elena Colicino; Sarah E. Harris; Jude Gibson; Anjali K. Henders; Paul Redmond; Simon R. Cox; Alison Pattie; Janie Corley; Lee Murphy; Nicholas G. Martin; Grant W. Montgomery; Andrew P. Feinberg; M. Daniele Fallin; Michael L Multhaup; Andrew E. Jaffe; Roby Joehanes; Joel Schwartz; Allan C. Just; Kathryn L. Lunetta; Joanne M. Murabito; Steve Horvath; Andrea Baccarelli; Daniel Levy; Peter M. Visscher; Naomi R. Wray; Ian J. Deary
BackgroundDNA methylation levels change with age. Recent studies have identified biomarkers of chronological age based on DNA methylation levels. It is not yet known whether DNA methylation age captures aspects of biological age.ResultsHere we test whether differences between people’s chronological ages and estimated ages, DNA methylation age, predict all-cause mortality in later life. The difference between DNA methylation age and chronological age (Δage) was calculated in four longitudinal cohorts of older people. Meta-analysis of proportional hazards models from the four cohorts was used to determine the association between Δage and mortality. A 5-year higher Δage is associated with a 21% higher mortality risk, adjusting for age and sex. After further adjustments for childhood IQ, education, social class, hypertension, diabetes, cardiovascular disease, and APOE e4 status, there is a 16% increased mortality risk for those with a 5-year higher Δage. A pedigree-based heritability analysis of Δage was conducted in a separate cohort. The heritability of Δage was 0.43.ConclusionsDNA methylation-derived measures of accelerated aging are heritable traits that predict mortality independently of health status, lifestyle factors, and known genetic factors.
Aging (Albany NY) , 8 (9) pp. 1844-1865. (2016) | 2016
Brian H. Chen; Riccardo E. Marioni; Elena Colicino; Marjolein J. Peters; Cavin K. Ward-Caviness; Pei-Chien Tsai; Nicholas S. Roetker; Allan C. Just; Ellen W. Demerath; Weihua Guan; Jan Bressler; Myriam Fornage; Stephanie A. Studenski; Amy Vandiver; Ann Zenobia Moore; Toshiko Tanaka; Douglas P. Kiel; Liming Liang; Pantel S. Vokonas; Joel Schwartz; Kathryn L. Lunetta; Joanne M. Murabito; Stefania Bandinelli; Dena Hernandez; David Melzer; Michael A. Nalls; Luke C. Pilling; Timothy R. Price; Andrew Singleton; Christian Gieger
Estimates of biological age based on DNA methylation patterns, often referred to as “epigenetic age”, “DNAm age”, have been shown to be robust biomarkers of age in humans. We previously demonstrated that independent of chronological age, epigenetic age assessed in blood predicted all-cause mortality in four human cohorts. Here, we expanded our original observation to 13 different cohorts for a total sample size of 13,089 individuals, including three racial/ethnic groups. In addition, we examined whether incorporating information on blood cell composition into the epigenetic age metrics improves their predictive power for mortality. All considered measures of epigenetic age acceleration were predictive of mortality (p≤8.2×10−9), independent of chronological age, even after adjusting for additional risk factors (p<5.4×10−4), and within the racial/ethnic groups that we examined (non-Hispanic whites, Hispanics, African Americans). Epigenetic age estimates that incorporated information on blood cell composition led to the smallest p-values for time to death (p=7.5×10−43). Overall, this study a) strengthens the evidence that epigenetic age predicts all-cause mortality above and beyond chronological age and traditional risk factors, and b) demonstrates that epigenetic age estimates that incorporate information on blood cell counts lead to highly significant associations with all-cause mortality.
Circulation-cardiovascular Genetics | 2016
Roby Joehanes; Allan C. Just; Riccardo E. Marioni; Luke C. Pilling; Lindsay M. Reynolds; Pooja R. Mandaviya; Weihua Guan; Tao Xu; Cathy E. Elks; Stella Aslibekyan; Hortensia Moreno-Macías; Jennifer A. Smith; Jennifer A. Brody; Radhika Dhingra; Paul Yousefi; James S. Pankow; Sonja Kunze; Sonia Shah; Allan F. McRae; Kurt Lohman; Jin Sha; Devin M. Absher; Luigi Ferrucci; Wei Zhao; Ellen W. Demerath; Jan Bressler; Megan L. Grove; Tianxiao Huan; Chunyu Liu; Michael M. Mendelson
Background—DNA methylation leaves a long-term signature of smoking exposure and is one potential mechanism by which tobacco exposure predisposes to adverse health outcomes, such as cancers, osteoporosis, lung, and cardiovascular disorders. Methods and Results—To comprehensively determine the association between cigarette smoking and DNA methylation, we conducted a meta-analysis of genome-wide DNA methylation assessed using the Illumina BeadChip 450K array on 15 907 blood-derived DNA samples from participants in 16 cohorts (including 2433 current, 6518 former, and 6956 never smokers). Comparing current versus never smokers, 2623 cytosine–phosphate–guanine sites (CpGs), annotated to 1405 genes, were statistically significantly differentially methylated at Bonferroni threshold of P<1×10−7 (18 760 CpGs at false discovery rate <0.05). Genes annotated to these CpGs were enriched for associations with several smoking-related traits in genome-wide studies including pulmonary function, cancers, inflammatory diseases, and heart disease. Comparing former versus never smokers, 185 of the CpGs that differed between current and never smokers were significant P<1×10−7 (2623 CpGs at false discovery rate <0.05), indicating a pattern of persistent altered methylation, with attenuation, after smoking cessation. Transcriptomic integration identified effects on gene expression at many differentially methylated CpGs. Conclusions—Cigarette smoking has a broad impact on genome-wide methylation that, at many loci, persists many years after smoking cessation. Many of the differentially methylated genes were novel genes with respect to biological effects of smoking and might represent therapeutic targets for prevention or treatment of tobacco-related diseases. Methylation at these sites could also serve as sensitive and stable biomarkers of lifetime exposure to tobacco smoke.
Genome Biology | 2016
Symen Ligthart; Carola Marzi; Stella Aslibekyan; Michael M. Mendelson; Karen N. Conneely; Toshiko Tanaka; Elena Colicino; Lindsay L. Waite; Roby Joehanes; Weihua Guan; Jennifer A. Brody; Cathy E. Elks; Riccardo E. Marioni; Min A. Jhun; Golareh Agha; Jan Bressler; Cavin K. Ward-Caviness; Brian H. Chen; Tianxiao Huan; Kelly M. Bakulski; Elias Salfati; Giovanni Fiorito; Simone Wahl; Katharina Schramm; Jin Sha; Dena Hernandez; Allan C. Just; Jennifer A. Smith; Nona Sotoodehnia; Luke C. Pilling
BackgroundChronic low-grade inflammation reflects a subclinical immune response implicated in the pathogenesis of complex diseases. Identifying genetic loci where DNA methylation is associated with chronic low-grade inflammation may reveal novel pathways or therapeutic targets for inflammation.ResultsWe performed a meta-analysis of epigenome-wide association studies (EWAS) of serum C-reactive protein (CRP), which is a sensitive marker of low-grade inflammation, in a large European population (n = 8863) and trans-ethnic replication in African Americans (n = 4111). We found differential methylation at 218 CpG sites to be associated with CRP (P < 1.15 × 10–7) in the discovery panel of European ancestry and replicated (P < 2.29 × 10–4) 58 CpG sites (45 unique loci) among African Americans. To further characterize the molecular and clinical relevance of the findings, we examined the association with gene expression, genetic sequence variants, and clinical outcomes. DNA methylation at nine (16%) CpG sites was associated with whole blood gene expression in cis (P < 8.47 × 10–5), ten (17%) CpG sites were associated with a nearby genetic variant (P < 2.50 × 10–3), and 51 (88%) were also associated with at least one related cardiometabolic entity (P < 9.58 × 10–5). An additive weighted score of replicated CpG sites accounted for up to 6% inter-individual variation (R2) of age-adjusted and sex-adjusted CRP, independent of known CRP-related genetic variants.ConclusionWe have completed an EWAS of chronic low-grade inflammation and identified many novel genetic loci underlying inflammation that may serve as targets for the development of novel therapeutic interventions for inflammation.
Environment International | 2015
Francesco Nordio; Antonella Zanobetti; Elena Colicino; Itai Kloog; Joel Schwartz
The shape of the non-linear relationship between temperature and mortality varies among cities with different climatic conditions. There has been little examination of how these curves change over space and time. We evaluated the short-term effects of hot and cold temperatures on daily mortality over six 7-year periods in 211 US cities, comprising over 42 million deaths. Cluster analysis was used to group the cities according to similar temperatures and relative humidity. Temperature-mortality functions were calculated using B-splines to model the heat effect (lag 0) and the cold effect on mortality (moving average lags 1-5). The functions were then combined through meta-smoothing and subsequently analyzed by meta-regression. We identified eight clusters. At lag 0, Cluster 5 (West Coast) had a RR of 1.14 (95% CI: 1.11,1.17) for temperatures of 27 °C vs 15.6 °C, and Cluster 6 (Gulf Coast) has a RR of 1.04 (95% CI: 1.03,1.05), suggesting that people are acclimated to their respective climates. Controlling for cluster effect in the multivariate-meta regression we found that across the US, the excess mortality from a 24-h temperature of 27 °C decreased over time from 10.6% to 0.9%. We found that the overall risk due to the heat effect is significantly affected by summer temperature mean and air condition usage, which could be a potential predictor in building climate-change scenarios.
EBioMedicine | 2016
Yinan Zheng; Brian Thomas Joyce; Elena Colicino; Lei Liu; Wei Zhang; Qi Dai; Martha J. Shrubsole; Warren A. Kibbe; Tao Gao; Zhou Zhang; Nadereh Jafari; Pantel S. Vokonas; Joel Schwartz; Andrea Baccarelli; Lifang Hou
Biological measures of aging are important for understanding the health of an aging population, with epigenetics particularly promising. Previous studies found that tumor tissue is epigenetically older than its donors are chronologically. We examined whether blood Δage (the discrepancy between epigenetic and chronological ages) can predict cancer incidence or mortality, thus assessing its potential as a cancer biomarker. In a prospective cohort, Δage and its rate of change over time were calculated in 834 blood leukocyte samples collected from 442 participants free of cancer at blood draw. About 3–5 years before cancer onset or death, Δage was associated with cancer risks in a dose-responsive manner (P = 0.02) and a one-year increase in Δage was associated with cancer incidence (HR: 1.06, 95% CI: 1.02–1.10) and mortality (HR: 1.17, 95% CI: 1.07–1.28). Participants with smaller Δage and decelerated epigenetic aging over time had the lowest risks of cancer incidence (P = 0.003) and mortality (P = 0.02). Δage was associated with cancer incidence in a ‘J-shaped’ manner for subjects examined pre-2003, and with cancer mortality in a time-varying manner. We conclude that blood epigenetic age may mirror epigenetic abnormalities related to cancer development, potentially serving as a minimally invasive biomarker for cancer early detection.
Environmental Health Perspectives | 2016
Cheng Peng; Marie-Abele Bind; Elena Colicino; Itai Kloog; Hyang-Min Byun; Laura Cantone; Letizia Trevisi; Jia Zhong; Kasey J. Brennan; Alexandra E. Dereix; Pantel S. Vokonas; Brent A. Coull; Joel Schwartz; Andrea Baccarelli
Background: Among nondiabetic individuals, higher fasting blood glucose (FBG) independently predicts diabetes risk, cardiovascular disease, and dementia. Ambient PM2.5 (particulate matter with aerodynamic diameter ≤ 2.5 μm) is an emerging determinant of glucose dysregulation. PM2.5 effects and mechanisms are understudied among nondiabetic individuals. Objectives: Our goals were to investigate whether PM2.5 is associated with an increase in FBG and to explore potential mediating roles of epigenetic gene regulation. Methods: In 551 nondiabetic participants in the Normative Aging Study, we measured FBG, and DNA methylation of four inflammatory genes (IFN-γ, IL-6, ICAM-1, and TLR-2), up to four times between 2000 and 2011 (median = 2). We estimated short- and medium-term (1-, 7-, and 28-day preceding each clinical visit) ambient PM2.5 at each participant’s address using a validated hybrid land-use regression satellite-based model. We fitted covariate-adjusted regression models accounting for repeated measures. Results: Mean FBG was 99.8 mg/dL (SD = 10.7), 18% of the participants had impaired fasting glucose (IFG; i.e., 100–125 mg/dL FBG) at first visit. Interquartile increases in 1-, 7-, and 28-day PM2.5 were associated with 0.57 mg/dL (95% CI: 0.02, 1.11, p = 0.04), 1.02 mg/dL (95% CI: 0.41, 1.63, p = 0.001), and 0.89 mg/dL (95% CI: 0.32, 1.47, p = 0.003) higher FBG, respectively. The same PM2.5 metrics were associated with 13% (95% CI: –3%, 33%, p = 0.12), 27% (95% CI: 6%, 52%, p = 0.01) and 32% (95% CI: 10%, 58%, p = 0.003) higher odds of IFG, respectively. PM2.5 was negatively correlated with ICAM-1 methylation (p = 0.01), but not with other genes. Mediation analysis estimated that ICAM-1 methylation mediated 9% of the association of 28-day PM2.5 with FBG. Conclusions: Among nondiabetics, short- and medium-term PM2.5 were associated with higher FBG. Mediation analysis indicated that part of this association was mediated by ICAM-1 promoter methylation. Citation: Peng C, Bind MA, Colicino E, Kloog I, Byun HM, Cantone L, Trevisi L, Zhong J, Brennan K, Dereix AE, Vokonas PS, Coull BA, Schwartz JD, Baccarelli AA. 2016. Particulate air pollution and fasting blood glucose in nondiabetic individuals: associations and epigenetic mediation in the Normative Aging Study, 2000–2011. Environ Health Perspect 124:1715–1721; http://dx.doi.org/10.1289/EHP183
Journal of the American Heart Association | 2015
Jia Zhong; Elena Colicino; Xinyi Lin; Amar J. Mehta; Itai Kloog; Antonella Zanobetti; Hyang-Min Byun; Marie-Abele Bind; Laura Cantone; Diddier Prada; Letizia Tarantini; Letizia Trevisi; David Sparrow; Pantel S. Vokonas; Joel Schwartz; Andrea Baccarelli
Background Short‐term fine particles (PM2.5) exposure is associated with reduced heart rate variability, a strong predictor of cardiac mortality among older people. Identifying modifiable factors that confer susceptibility is essential for intervention. We evaluated whether Toll‐like receptor 2 (TLR2) methylation, a reversible immune‐epigenetic process, and its dietary modulation by flavonoids and methyl nutrients, modify susceptibility to heart rate variability effects following PM2.5 exposure. Methods and Results We measured heart rate variability and PM2.5 repeatedly over 11 years (1275 total observations) among 573 elderly men from the Normative Aging Study. Blood TLR2 methylation was analyzed using pyrosequencing. Daily flavonoid and methyl nutrients intakes were assessed through the Food Frequency Questionnaire (FFQ). Every 10 μg/m3 increase in 48‐hour PM2.5 moving average was associated with 7.74% (95% CI: −1.21% to 15.90%; P=0.09), 7.46% (95% CI: 0.99% to 13.50%; P=0.02), 14.18% (95% CI: 1.14% to 25.49%; P=0.03), and 12.94% (95% CI: −2.36% to 25.96%; P=0.09) reductions in root mean square of successive differences, standard deviation of normal‐to‐normal intervals, low‐frequency power, and high‐frequency power, respectively. Higher TLR2 methylation exacerbated the root mean square of successive differences, standard deviation of normal‐to‐normal intervals, low‐frequency, and high‐frequency reductions associated with heightened PM2.5 (Pinteraction=0.006, 0.03, 0.05, 0.04, respectively). Every interquartile‐range increase in flavonoid intake was associated with 5.09% reduction in mean TLR2 methylation (95% CI: 0.12% to 10.06%; P=0.05) and counteracted the effects of PM2.5 on low frequency (Pinteraction=0.05). No significant effect of methyl nutrients on TLR2 methylation was observed. Conclusions Higher TLR2 methylation may confer susceptibility to adverse cardiac autonomic effects of PM2.5 exposure in older individuals. Higher flavonoid intake may attenuate these effects, possibly by decreasing TLR2 methylation.
Journal of the American Heart Association | 2016
Hyang-Min Byun; Elena Colicino; Letizia Trevisi; Tianteng Fan; David C. Christiani; Andrea Baccarelli
Background The mitochondrion is the primary target of oxidative stress in response to exogenous environments. Mitochondrial DNA (mtDNA) is independent from nuclear DNA and uses separate epigenetic machinery to regulate mtDNA methylation. The mtDNA damage induced by oxidative stress can cause mitochondrial dysfunction and is implicated in human diseases; however, mtDNA methylation has been largely overlooked in environmental studies relating to human disease. The purpose of this study was to examine the association between exposure to fine metal‐rich particulates (particulate matter <2.5 µm in diameter [PM 2.5]) from welding in a boilermaker union and blood mtDNA methylation in relation to heart rate variability. Methods and Results Forty‐eight healthy men were recruited on multiple sampling cycles at the Boilermaker Union Local 29, located in Quincy, Massachusetts. We measured personal PM 2.5 in the background ambient environment. We measured blood mtDNA methylation in the mtDNA promoter (D‐loop) and genes essential for ATP synthesis (MT‐TF and MT‐RNR1) by bisulfite pyrosequencing. All analyses were adjusted for demographics, type of job, season, welding‐work day, and mtDNA methylation experimental batch effect. The participants’ PM 2.5 exposure was significantly higher after a welding‐work day (mean 0.38 mg/m3) than the background personal level (mean 0.15 mg/m3, P<0.001). Blood mtDNA methylation in the D‐loop promoter was associated with PM 2.5 levels (β=−0.99%, SE=0.41, P=0.02). MT‐TF and MT‐RNR1 methylation was not associated with PM 2.5 exposure (β=0.10%, SE=0.45, P=0.82). Interaction of PM 2.5 exposure levels and D‐loop promoter methylation was significantly associated with markers of heart rate variability. Conclusions Blood mtDNA methylation levels were negatively associated with PM 2.5 exposure and modified the adverse relationships between PM 2.5 exposure and heart rate variability outcomes.
Oncotarget | 2016
Cavin K. Ward-Caviness; Jamaji C. Nwanaji-Enwerem; Kathrin Wolf; Simone Wahl; Elena Colicino; Letizia Trevisi; Itai Kloog; Allan C. Just; Pantel S. Vokonas; Josef Cyrys; Christian Gieger; Joel Schwartz; Andrea Baccarelli; Alexandra Schneider; Annette Peters
Long-term exposure to air pollution is associated with age-related diseases. We explored the association between accelerated biological aging and air pollution, a potential mechanism linking air pollution and health. We estimated long-term exposure to PM10, PM2.5, PM2.5 absorbance/black carbon (BC), and NOx via land-use regression models in individuals from the KORA F4 cohort. Accelerated biological aging was assessed using telomere length (TeloAA) and three epigenetic measures: DNA methylation age acceleration (DNAmAA), extrinsic epigenetic age acceleration (correlated with immune cell counts, EEAA), and intrinsic epigenetic age acceleration (independent of immune cell counts, IEAA). We also investigated sex-specific associations between air pollution and biological aging, given the published association between sex and aging measures. In KORA an interquartile range (0.97 μg/m3) increase in PM2.5 was associated with a 0.33 y increase in EEAA (CI = 0.01, 0.64; P = 0.04). BC and NOx (indicators or traffic exposure) were associated with DNAmAA and IEAA in women, while TeloAA was inversely associated with BC in men. We replicated this inverse BC-TeloAA association in the Normative Aging Study, a male cohort based in the USA. A multiple phenotype analysis in KORA F4 combining all aging measures showed that BC and PM10 were broadly associated with biological aging in men. Thus, we conclude that long-term exposure to air pollution is associated with biological aging measures, potentially in a sex-specific manner. However, many of the associations were relatively weak and further replication of overall and sex-specific associations is warranted.