Elena Dellacasa
University of Genoa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elena Dellacasa.
Colloids and Surfaces B: Biointerfaces | 2014
Laura Pastorino; Elena Dellacasa; Silvia Scaglione; Massimo Giulianelli; Francesca Sbrana; Massimo Vassalli; Carmelina Ruggiero
Collagens are among the most widely present and important proteins composing the human total body, providing strength and structural stability to various tissues, from skin to bone. In this paper, we report an innovative approach to bioactivate planar surfaces with oriented collagen molecules to promote cells proliferation and alignment. The Langmuir-Blodgett technique was used to form a stable collagen film at the air-water interface and the Langmuir-Schaefer deposition was adopted to transfer it to the support surface. The deposition process was monitored by estimating the mass of the protein layers after each deposition step. Collagen films were then structurally characterized by atomic force, scanning electron and fluorescent microscopies. Finally, collagen films were functionally tested in vitro. To this aim, 3T3 cells were seeded onto the silicon supports either modified or not (control) by collagen film deposition. Cells adhesion and proliferation on collagen films were found to be greater than those on control both after 1 (p<0.05) and 7 days culture. Moreover, the functionalization of the substrate surface triggered a parallel orientation of cells when cultured on it. In conclusion, these data demonstrated that the Langmuir-Schaefer technique can be successfully used for the deposition of oriented collagen films for tissue engineering applications.
Beilstein Journal of Nanotechnology | 2016
Elena Dellacasa; Li Zhao; Gesheng Yang; Laura Pastorino; Gleb B. Sukhorukov
Summary The enantiomers poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) were alternately adsorbed directly on calcium carbonate (CaCO3) templates and on poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) multilayer precursors in order to fabricate a novel layer-by-layer (LBL) assembly. A single layer of poly(L-lysine) (PLL) was used as a linker between the (PDLA/PLLA)n stereocomplex and the cores with and without the polymeric (PSS/PAH)n/PLL multilayer precursor (PEM). Nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) were used to characterize the chemical composition and molecular weight of poly(lactic acid) polymers. Both multilayer structures, with and without polymeric precursor, were firstly fabricated and characterized on planar supports. A quartz crystal microbalance (QCM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and ellipsometry were used to evaluate the thickness and mass of the multilayers. Then, hollow, spherical microcapsules were obtained by the removal of the CaCO3 sacrificial template. The chemical composition of the obtained microcapsules was confirmed by differential scanning calorimetry (DSC) and wide X-ray diffraction (WXRD) analyses. The microcapsule morphology was evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The experimental results confirm the successful fabrication of this innovative system, and its full biocompatibility makes it worthy of further characterization as a promising drug carrier for sustained release.
PLOS ONE | 2014
Laura Pastorino; Elena Dellacasa; Mohamed Radzi Noor; Tewfik Soulimane; Paolo Bianchini; Francesca D'autilia; Alexei Antipov; Alberto Diaspro; Syed A. M. Tofail; Carmelina Ruggiero
Cell-sized polyelectrolyte capsules functionalized with a redox-driven proton pump protein were assembled for the first time. The interaction of polyelectrolyte microcapsules, fabricated by electrostatic layer-by-layer assembly, with cytochrome c oxidase molecules was investigated. We found that the cytochrome c oxidase retained its functionality, that the functionalized microcapsules interacting with cytochrome c oxidase were permeable and that the permeability characteristics of the microcapsule shell depend on the shell components. This work provides a significant input towards the fabrication of an integrated device made of biological components and based on specific biomolecular functions and properties.
Materials Science and Engineering: C | 2017
Laura Pastorino; Elena Dellacasa; P. Petrini; Orietta Monticelli
In this work, novel chitosan based microparticles were developed by the layer-by-layer deposition of poly(lactic acid) stereocomplex films on their surface in the view of controlling the release of encapsulated hydrophilic drugs. As first step, the quartz crystal microbalance technique was used to monitor the step-by-step deposition of the stereocomplex layers onto chitosan by evaluating the deposited mass for each layer. Chitosan microparticles, with a size ranging between 40 and 90μm, were then produced by an aerodynamically-assisted jetting technique and covered by a poly(lactic acid) stereocomplex shell. Infrared spectroscopy, wide X-ray diffraction, field emission scanning electron microscopy and contact angle measurements were used to verify the effective poly(lactic acid) adsorption onto chitosan microparticles and the stereocomplex formation. Finally, the release of a hydrophilic local anesthetic, procaine hydrochloride, from uncoated and stereocomplex-nanocoated microparticles was preliminary evaluated over a period of 15days.
Polymers | 2018
Alessandra Marrella; Alberto Lagazzo; Elena Dellacasa; Camilla Pasquini; Elisabetta Finocchio; Fabrizio Barberis; Laura Pastorino; Paolo Giannoni; Silvia Scaglione
One of the current major challenges in orthopedic surgery is the treatment of meniscal lesions. Some of the main issues include mechanical consistency of meniscal implants, besides their fixation methods and integration with the host tissues. To tackle these aspects we realized a micro-porous, gelatin/polyvinyl alcohol (PVA)-based hydrogel to approach the high percentage of water present in the native meniscal tissue, recapitulating its biomechanical features, and, at the same time, realizing a porous implant, permissive to cell infiltration and tissue integration. In particular, we adopted aerodynamically-assisted jetting technology to realize sodium alginate micro-particles with controlled dimensions to be used as porogens. The porous hydrogels were realized through freezing-thawing cycles, followed by alginate particles leaching. Composite hydrogels showed a high porosity (74%) and an open porous structure, while preserving the elasticity behavior (E = 0.25 MPa) and high water content, typical of PVA-based hydrogels. The ex vivo animal model validation proved that the addition of gelatin, combined with the micro-porosity of the hydrogel, enhanced implant integration with the host tissue, allowing penetration of host cells within the construct boundaries. Altogether, these results show that the combined use of a water-insoluble micro-porogen and gelatin, as a bioactive agent, allowed the realization of a porous composite PVA-based hydrogel to be envisaged as a potential meniscal substitute.
international conference of the ieee engineering in medicine and biology society | 2015
Elena Dellacasa; Laura Pastorino; Chiara Scanarotti; Stefania Vernazza; Anna Maria Bassi; Carmelina Ruggiero
A reactive oxygen species-mediated targeting system has been used to selectively kill cancer cells. Two different cell lines, normal and cancer cells, have been cultured and treated with a peroxide olive oil (K600) in simple solution and in form of nanoemulsion (N-K600). Preliminary results of both treatments have been compared.
Biomaterials | 2018
Maria Teresa Tedesco; Donatella Di Lisa; Paolo Massobrio; Nicolò Colistra; Mattia Pesce; Tiziano Catelani; Elena Dellacasa; Roberto Raiteri; Sergio Martinoia; Laura Pastorino
Materials Letters | 2016
Stefan G. Stanciu; Denis E. Tranca; Carmelina Ruggiero; George A. Stanciu; Elena Dellacasa; Alexei Antipov; Radu Hristu; Laura Pastorino
Journal of Bionanoscience | 2016
Laura Pastorino; Elena Dellacasa; Mohammad Hossei Dabiri; Bruno Fabiano; Svetlana Erokhina
Materials Letters | 2018
Elena Dellacasa; Mahdi Forouharshad; Laura Pastorino; Orietta Monticelli