Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elena F. Brachtel is active.

Publication


Featured researches published by Elena F. Brachtel.


Science | 2013

Circulating Breast Tumor Cells Exhibit Dynamic Changes in Epithelial and Mesenchymal Composition

Min Yu; Aditya Bardia; Ben S. Wittner; Shannon L. Stott; Malgorzata E. Smas; David T. Ting; Steven J. Isakoff; Jordan C. Ciciliano; Mn Wells; Ajay M. Shah; Kyle Concannon; Maria C. Donaldson; Lecia V. Sequist; Elena F. Brachtel; Dennis C. Sgroi; José Baselga; Sridhar Ramaswamy; Mehmet Toner; Daniel A. Haber; Shyamala Maheswaran

Cells in Transit(ion) Epithelial-mesenchymal transition (EMT) is a developmental program that converts adherent epithelial cells to a migratory mesenchymal state. This cell-fate change has been linked to tumor metastasis in preclinical models. To investigate whether EMT occurs in human cancer, Yu et al. (p. 580) isolated circulating tumor cells (CTCs) from breast cancer patients and analyzed their expression of epithelial and mesenchymal markers by RNA–in situ hybridization and RNA sequencing. Biphenotypic cells expressing both types of markers were rare in primary breast tumors but were enriched among CTCs, as were cells expressing only mesenchymal markers. Serial blood samples from one patient revealed that CTCs in the mesenchymal state declined in number when the patient responded to therapy but rebounded when the disease began to progress—a pattern repeated when a different therapy was administered. Thus, EMT may facilitate tumor cell dissemination in humans. Tumor cells circulating in the blood of cancer patients undergo a phenotypic change that may facilitate their spread. Epithelial-mesenchymal transition (EMT) of adherent epithelial cells to a migratory mesenchymal state has been implicated in tumor metastasis in preclinical models. To investigate its role in human cancer, we characterized EMT in circulating tumor cells (CTCs) from breast cancer patients. Rare primary tumor cells simultaneously expressed mesenchymal and epithelial markers, but mesenchymal cells were highly enriched in CTCs. Serial CTC monitoring in 11 patients suggested an association of mesenchymal CTCs with disease progression. In an index patient, reversible shifts between these cell fates accompanied each cycle of response to therapy and disease progression. Mesenchymal CTCs occurred as both single cells and multicellular clusters, expressing known EMT regulators, including transforming growth factor (TGF)–β pathway components and the FOXC1 transcription factor. These data support a role for EMT in the blood-borne dissemination of human breast cancer.


Nature | 2011

Functional genomics reveal that the serine synthesis pathway is essential in breast cancer

Richard Possemato; Kevin Marks; Yoav D. Shaul; Michael E. Pacold; Dohoon Kim; Kivanc Birsoy; Shalini Sethumadhavan; Hin-Koon Woo; Hyun Gyung Jang; Abhishek K. Jha; Walter W. Chen; Francesca G. Barrett; Nicolas Stransky; Zhi-Yang Tsun; Glenn S. Cowley; Jordi Barretina; Nada Y. Kalaany; Peggy P. Hsu; Kathleen Ottina; Albert M. Chan; Bingbing Yuan; Levi A. Garraway; David E. Root; Mari Mino-Kenudson; Elena F. Brachtel; Edward M. Driggers; David M. Sabatini

Cancer cells adapt their metabolic processes to drive macromolecular biosynthesis for rapid cell growth and proliferation (1,2). RNAi-based loss of function screening has proven powerful for the identification of novel and interesting cancer targets, and recent studies have used this technology in vivo to identify novel tumor suppressor genes (3). Here, we developed a method for identifying novel cancer targets via negative selection RNAi screening in solid tumours. Using this method, we screened a set of metabolic genes associated with aggressive breast cancer and stemness to identify those required for in vivo tumourigenesis. Among the genes identified, phosphoglycerate dehydrogenase (PHGDH) is in a genomic region of recurrent copy number gain in breast cancer and PHGDH protein levels are elevated in 70% of ER-negative breast cancers. PHGDH catalyzes the first step in the serine biosynthesis pathway, and breast cancer cells with high PHGDH expression have elevations in serine synthesis flux. Suppression of PHGDH in cell lines with elevated PHGDH expression, but not those without, causes a strong decrease in cell proliferation and a reduction in serine synthesis. We find that PHGDH suppression does not affect intracellular serine levels, but causes a drop in the levels of alpha-ketoglutarate, another output of the pathway and a TCA cycle intermediate. In cells with high PHGDH expression, the serine synthesis pathway contributes approximately 50% of the total anaplerotic flux of glutamine into the TCA cycle. These results reveal that certain breast cancers are dependent upon increased serine pathway flux caused by PHGDH over-expression and demonstrate the utility of in vivo negative selection RNAi screens for finding potential anticancer targets.


Science Translational Medicine | 2013

Inertial Focusing for Tumor Antigen–Dependent and –Independent Sorting of Rare Circulating Tumor Cells

Emre Özkumur; Ajay M. Shah; Jordan C. Ciciliano; Benjamin L. Emmink; David T. Miyamoto; Elena F. Brachtel; Min Yu; Pin-i Chen; Bailey Morgan; Julie Trautwein; Anya M. Kimura; Sudarshana Sengupta; Shannon L. Stott; Nezihi Murat Karabacak; Tom Barber; John Walsh; Kyle C. Smith; Philipp S. Spuhler; James P. Sullivan; Richard J. Lee; David T. Ting; Xi Luo; Alice T. Shaw; Aditya Bardia; Lecia V. Sequist; David N. Louis; Shyamala Maheswaran; Ravi Kapur; Daniel A. Haber; Mehmet Toner

A multistage microfluidic chip is capable of sorting rare EpCAM+ and EpCAM− CTCs from cancer patients’ whole blood. Positive and Negative Outcomes Usually people want the good news first, to help cope with the bad news that inevitably follows. However, patients will soon desire both the positive and the negative outcomes together, according to the latest study by Ozkumur and colleagues. These authors have developed a multistage microfluidic device that is capable of sorting rare circulating tumor cells (CTCs) that are either positive or negative for the surface antigen epithelial cell adhesion molecule (EpCAM). EpCAM+ cells found in the bloodstream have long defined the typical CTC. Many sorting technologies have been developed to enumerate EpCAM+ CTCs in cancer patient’s blood; however, these cells are not always detectable in cancers with low EpCAM expression, like triple-negative breast cancer or melanoma. Ozkumur et al. engineered an automated platform, called the “CTC-iChip,” that captured both EpCAM+ and EpCAM− cancer cells in clinical samples using a series of debulking, inertial focusing, and magnetic separation steps. The sorted CTCs could then be interrogated using standard clinical protocols, such as immunocytochemistry. The authors tested the “positive mode” of their device using whole blood from patients with prostate, lung, breast, pancreatic, and colorectal cancers. After successfully separating out the EpCAM+ CTCs, they confirmed that the cells were viable and had high-quality RNA for molecular analysis, in one example, detecting the EML4-ALK gene fusion in lung cancer. Using the “negative mode” of their device, the authors were able to capture EpCAM− CTCs from patients with metastatic breast cancer, pancreatic cancer, and melanoma. The isolated CTCs showed similar morphology when compared with primary tumor tissue from these patients, suggesting that the microfluidic device can be used for clinical diagnoses—delivering both positive and negative news at once. Ozkumur et al. also demonstrated that CTCs isolated using the iChip could be analyzed on the single-cell level. One such demonstration with 15 CTCs from a prostate cancer patient reveals marked heterogeneity in the expression of mesenchymal and stem cell markers as well as typical prostate cancer–related antigens. The CTC-iChip can therefore process large volumes of patient blood to obtain not just EpCAM+ CTCs but also the EpCAM− ones, thus giving a broader picture of an individual’s cancer status and also allowing the device to be used for more cancer types. With the ability to further analyze the molecular characteristics of CTCs, this CTC-iChip could be a promising addition to current diagnostic tools used in the clinic. Circulating tumor cells (CTCs) are shed into the bloodstream from primary and metastatic tumor deposits. Their isolation and analysis hold great promise for the early detection of invasive cancer and the management of advanced disease, but technological hurdles have limited their broad clinical utility. We describe an inertial focusing–enhanced microfluidic CTC capture platform, termed “CTC-iChip,” that is capable of sorting rare CTCs from whole blood at 107 cells/s. Most importantly, the iChip is capable of isolating CTCs using strategies that are either dependent or independent of tumor membrane epitopes, and thus applicable to virtually all cancers. We specifically demonstrate the use of the iChip in an expanded set of both epithelial and nonepithelial cancers including lung, prostate, pancreas, breast, and melanoma. The sorting of CTCs as unfixed cells in solution allows for the application of high-quality clinically standardized morphological and immunohistochemical analyses, as well as RNA-based single-cell molecular characterization. The combination of an unbiased, broadly applicable, high-throughput, and automatable rare cell sorting technology with generally accepted molecular assays and cytology standards will enable the integration of CTC-based diagnostics into the clinical management of cancer.


Nature Medicine | 2000

Human skin Langerhans cells are targets of dengue virus infection

Shuenn-Jue L. Wu; Geraldine Grouard-Vogel; Wellington Sun; John R. Mascola; Elena F. Brachtel; Ravithat Putvatana; Mark K. Louder; Luis Filgueira; Mary Marovich; Henry K. Wong; Andrew Blauvelt; Gerald S. Murphy; Merlin L. Robb; Bruce L. Innes; Deborah L. Birx; Curtis G. Hayes; Sarah S. Frankel

Dengue virus (DV), an arthropod-borne flavivirus, causes a febrile illness for which there is no antiviral treatment and no vaccine. Macrophages are important in dengue pathogenesis; however, the initial target cell for DV infection remains unknown. As DV is introduced into human skin by mosquitoes of the genus Aedes, we undertook experiments to determine whether human dendritic cells (DCs) were permissive for the growth of DV. Initial experiments demonstrated that blood-derived DCs were 10-fold more permissive for DV infection than were monocytes or macrophages. We confirmed this with human skin DCs (Langerhans cells and dermal/interstitial DCs). Using cadaveric human skin explants, we exposed skin DCs to DV ex vivo. Of the human leukoctye antigen DR-positive DCs that migrated from the skin, emigrants from both dermis and epidermis, 60–80% expressed DV antigens. These observations were supported by histologic findings from the skin rash of a human subject who received an attenuated tetravalent dengue vaccine. Immunohistochemistry of the skin showed CD1a-positive DCs double-labeled with an antibody against DV envelope glycoprotein. These data demonstrate that human skin DCs are permissive for DV infection, and provide a potential mechanism for the transmission of DV into human skin.


Science | 2014

Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility

Min Yu; Aditya Bardia; Nicola Aceto; Francesca Bersani; Marissa W. Madden; Maria C. Donaldson; Rushil Desai; Huili Zhu; Valentine Comaills; Zongli Zheng; Ben S. Wittner; Petar Stojanov; Elena F. Brachtel; Dennis C. Sgroi; Ravi Kapur; Toshihiro Shioda; David T. Ting; Sridhar Ramaswamy; Gad Getz; A. John Iafrate; Cyril H. Benes; Mehmet Toner; Shyamala Maheswaran; Daniel A. Haber

Staying one step ahead of tumors Cancer treatments require continual adjustment. A drug that works initially will lose its potency as the tumor acquires new mutations that allow it to bypass the drugs lethal effects. To stay ahead of the tumor, oncologists need a noninvasive way to collect tumor cells from patients over the course of their treatment. Analyzing the mutations in these samples may help them choose the right drugs as the tumors change. In a small study of breast cancer patients, Yu et al. show that rare tumor cells circulating in the blood can be captured in viable form and used for this purpose. Science, this issue p. 216 Mutational analysis of tumor cells isolated from the blood of cancer patients may help optimize treatment selection. Circulating tumor cells (CTCs) are present at low concentrations in the peripheral blood of patients with solid tumors. It has been proposed that the isolation, ex vivo culture, and characterization of CTCs may provide an opportunity to noninvasively monitor the changing patterns of drug susceptibility in individual patients as their tumors acquire new mutations. In a proof-of-concept study, we established CTC cultures from six patients with estrogen receptor–positive breast cancer. Three of five CTC lines tested were tumorigenic in mice. Genome sequencing of the CTC lines revealed preexisting mutations in the PIK3CA gene and newly acquired mutations in the estrogen receptor gene (ESR1), PIK3CA gene, and fibroblast growth factor receptor gene (FGFR2), among others. Drug sensitivity testing of CTC lines with multiple mutations revealed potential new therapeutic targets. With optimization of CTC culture conditions, this strategy may help identify the best therapies for individual cancer patients over the course of their disease.


Journal of Clinical Oncology | 2009

Occult Nipple Involvement in Breast Cancer: Clinicopathologic Findings in 316 Consecutive Mastectomy Specimens

Elena F. Brachtel; Jennifer Rusby; James S. Michaelson; L. Leon Chen; Alona Muzikansky; Barbara L. Smith; Frederick C. Koerner

PURPOSE Although breast-conserving surgery is a standard approach for patients with breast cancer, mastectomy often becomes necessary. Surgical options now include nipple-sparing mastectomy but its oncological safety is still controversial. This study evaluates frequency and patterns of occult nipple involvement in a large contemporary cohort of patients with the retroareolar margin as possible indicator of nipple involvement. PATIENTS AND METHODS Three hundred sixteen consecutive mastectomy specimens (232 therapeutic, 84 prophylactic) with grossly unremarkable nipples were evaluated by coronal sections through the entire nipple and subareolar tissue. Extent and location of nipple involvement by carcinoma was assessed with the tissue deep to the skin as potential retroareolar en-face resection margin. RESULTS Seventy-one percent of nipples from therapeutic mastectomies showed no pathologic abnormality, 21% had ductal carcinoma in situ (DCIS), invasive carcinoma (IC), or lymphovascular invasion (LVI), and 8% lobular neoplasia (lobular carcinoma in situ). Human epidermal growth factor receptor 2 amplification, tumor size, and tumor-nipple distance were associated with nipple involvement by multivariate analysis (P = .0047, .0126, and .0176); histologic grade of both DCIS (P = .002) and IC (P = .03), LVI (P = .03), and lymph node involvement (P = .02) by univariate analysis. Nipple involvement by IC or DCIS was identified in the retroareolar margin with a sensitivity of 0.8 and a negative predictive value of 0.96. None of the 84 prophylactic mastectomies showed nipple involvement by IC or DCIS. CONCLUSION Nipple-sparing mastectomy may be suitable for selected cases of breast carcinoma with low probability of nipple involvement by carcinoma and prophylactic procedures. A retroareolar en-face margin may be used to test for occult involvement in patients undergoing nipple-sparing mastectomy.


The Journal of Pathology | 2004

Expression of the Epstein-Barr virus (EBV)-encoded latent membrane protein 2A (LMP2A) in EBV-associated nasopharyngeal carcinoma.

Nicole Heussinger; Maike Büttner; German Ott; Elena F. Brachtel; Ben Z. Pilch; Elisabeth Kremmer; Gerald Niedobitek

The Epstein–Barr virus (EBV) is associated with virtually all cases of undifferentiated nasopharyngeal carcinoma (NPC) and has been classified as a group I carcinogen. In addition to its potential role in the pathogenesis of NPC, EBV also provides a possible target for immunotherapy of NPC, since a limited number of viral genes are expressed in the neoplastic cells. The EBV‐encoded latent membrane protein 2A (LMP2A) is considered a promising target since it provides epitopes recognized by EBV‐specific T‐cells. Using immunohistochemistry, the present study shows that LMP2A is expressed at the protein level in the neoplastic cells of 16 of 35 (45.7%) NPC biopsies. This finding provides further evidence suggesting that NPC tumour cells may be susceptible to lysis by cytotoxic T‐cells directed against LMP2A and should encourage efforts to develop immunotherapeutic approaches for the treatment of NPC. Copyright


Proceedings of the National Academy of Sciences of the United States of America | 2010

HOXB9, a gene overexpressed in breast cancer, promotes tumorigenicity and lung metastasis

Tetsu Hayashida; Fumiyuki Takahashi; Naokazu Chiba; Elena F. Brachtel; Motomi Takahashi; Nadia Godin-Heymann; Kenneth W. Gross; Maria d. M. Vivanco; Vasuki Wijendran; Toshihiro Shioda; Dennis C. Sgroi; Patricia K. Donahoe; Shyamala Maheswaran

The mechanisms underlying tumoral secretion of signaling molecules into the microenvironment, which modulates tumor cell fate, angiogenesis, invasion, and metastasis, are not well understood. Aberrant expression of transcription factors, which has been implicated in the tumorigenesis of several types of cancers, may provide a mechanism that induces the expression of growth and angiogenic factors in tumors, leading to their local increase in the tumor microenvironment, favoring tumor progression. In this report, we demonstrate that the transcription factor HOXB9 is overexpressed in breast carcinoma, where elevated expression correlates with high tumor grade. HOXB9 induces the expression of several angiogenic factors (VEGF, bFGF, IL-8, and ANGPTL-2), as well as ErbB (amphiregulin, epiregulin, and neuregulins) and TGF-ß, which activate their respective pathways, leading to increased cell motility and acquisition of mesenchymal phenotypes. In vivo, HOXB9 promotes the formation of large, well-vascularized tumors that metastasize to the lung. Thus, deregulated expression of HOXB9 contributes to breast cancer progression and lung metastasis by inducing several growth factors that alter tumor-specific cell fates and the tumor stromal microenvironment.


Genes & Development | 2009

A developmentally regulated inducer of EMT, LBX1, contributes to breast cancer progression

Min Yu; Gromoslaw A. Smolen; Jianmin Zhang; Ben S. Wittner; Benjamin J. Schott; Elena F. Brachtel; Sridhar Ramaswamy; Shyamala Maheswaran; Daniel A. Haber

Epithelial-to-mesenchymal transition (EMT) plays an important role during normal embryogenesis, and it has been implicated in cancer invasion and metastasis. Here, we report that Ladybird homeobox 1 (LBX1), a developmentally regulated homeobox gene, directs expression of the known EMT inducers ZEB1, ZEB2, Snail1, and transforming growth factor beta2 (TGFB2). In mammary epithelial cells, overexpression of LBX1 leads to morphological transformation, expression of mesenchymal markers, enhanced cell migration, increased CD44(high)/CD24(low) progenitor cell population, and tumorigenic cooperation with known oncogenes. In human breast cancer, LBX1 is up-regulated in the unfavorable estrogen receptor (ER)/progesterone (PR)/HER2 triple-negative basal-like subtype. Thus, aberrant expression of LBX1 may lead to the activation of a developmentally regulated EMT pathway in human breast cancer.


British Journal of Surgery | 2008

Development and validation of a model predictive of occult nipple involvement in women undergoing mastectomy

Jennifer Rusby; Elena F. Brachtel; M. Othus; James S. Michaelson; Frederick C. Koerner; Barbara L. Smith

This prospective study aimed to build a predictive model using preoperative information to aid selection for nipple‐sparing mastectomy.

Collaboration


Dive into the Elena F. Brachtel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge