Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elena F. Koslover is active.

Publication


Featured researches published by Elena F. Koslover.


Journal of Cell Biology | 2013

An in vitro assay for entry into cilia reveals unique properties of the soluble diffusion barrier

David K. Breslow; Elena F. Koslover; Federica Seydel; Andrew J. Spakowitz; Maxence V. Nachury

The ciliary permeability barrier is mechanistically distinct from other cellular diffusion barriers and allows soluble proteins under ∼100 kD in size to enter cilia in the absence of active transport.


eLife | 2013

Single molecule imaging reveals a major role for diffusion in the exploration of ciliary space by signaling receptors

Fan Ye; David K. Breslow; Elena F. Koslover; Andrew J. Spakowitz; W. James Nelson; Maxence V. Nachury

The dynamic organization of signaling cascades inside primary cilia is key to signal propagation. Yet little is known about the dynamics of ciliary membrane proteins besides a possible role for motor-driven Intraflagellar Transport (IFT). To characterize these dynamics, we imaged single molecules of Somatostatin Receptor 3 (SSTR3, a GPCR) and Smoothened (Smo, a Hedgehog signal transducer) in the ciliary membrane. While IFT trains moved processively from one end of the cilium to the other, single SSTR3 and Smo underwent mostly diffusive behavior interspersed with short periods of directional movements. Statistical subtraction of instant velocities revealed that SSTR3 and Smo spent less than a third of their time undergoing active transport. Finally, SSTR3 and IFT movements could be uncoupled by perturbing either membrane protein diffusion or active transport. Thus ciliary membrane proteins move predominantly by diffusion, and attachment to IFT trains is transient and stochastic rather than processive or spatially determined. DOI: http://dx.doi.org/10.7554/eLife.00654.001


Journal of Chemical Physics | 2007

Comparison of double-ended transition state search methods

Elena F. Koslover; David J. Wales

While a variety of double-ended transition state search methods have been developed, their relative performance in characterizing complex multistep pathways between structurally disparate molecular conformations remains unclear. Three such methods (doubly-nudged elastic band, a string method, and a growing string method) are compared for a series of benchmarks ranging from permutational isomerizations of the seven-atom Lennard-Jones cluster (LJ(7)) to highly cooperative LJ(38) and LJ(75) rearrangements, and the folding pathways of two peptides. A database of short paths between LJ(13) local minima is used to explore the effects of parameters and suggest reasonable default values. Each double-ended method was employed within the framework of a missing connection network flow algorithm to construct more complicated multistep pathways. We find that in our implementation none of the three methods definitively outperforms the others, and that their relative effectiveness is strongly system and parameter dependent.


Science | 2015

Mechanical crack propagation drives millisecond daughter cell separation in Staphylococcus aureus

X. Zhou; David K. Halladin; Enrique R. Rojas; Elena F. Koslover; Timothy K. Lee; Kerwyn Casey Huang; Julie A. Theriot

Pop goes the coccus Daughter cell separation in Staphylococcus aureus proceeds much like the cracking of an egg. So say Zhou et al., who examined dividing cells with millisecond precision using high-speed videomicroscopy. Rather than proceeding gradually, tiny imperfections in the mother cell wall were seen to crack open, leaving two daughter cells linked by a hinge. Science, this issue p. 574 Daughter cell separation in Staphylococcus aureus proceeds much like the cracking of an egg. When Staphylococcus aureus undergoes cytokinesis, it builds a septum, generating two hemispherical daughters whose cell walls are only connected via a narrow peripheral ring. We found that resolution of this ring occurred within milliseconds (“popping”), without detectable changes in cell volume. The likelihood of popping depended on cell-wall stress, and the separating cells split open asymmetrically, leaving the daughters connected by a hinge. An elastostatic model of the wall indicated high circumferential stress in the peripheral ring before popping. Last, we observed small perforations in the peripheral ring that are likely initial points of mechanical failure. Thus, the ultrafast daughter cell separation in S. aureus appears to be driven by accumulation of stress in the peripheral ring and exhibits hallmarks of mechanical crack propagation.


Biophysical Journal | 2010

Dynamic strategies for target-site search by DNA-binding proteins.

Mario Diaz de la Rosa; Elena F. Koslover; Peter J. Mulligan; Andrew J. Spakowitz

Gene regulatory proteins find their target sites on DNA remarkably quickly; the experimental binding rate for lac repressor is orders-of-magnitude higher than predicted by free diffusion alone. It has been proposed that nonspecific binding aids the search by allowing proteins to slide and hop along DNA. We develop a reaction-diffusion theory of protein translocation that accounts for transport both on and off the strand and incorporates the physical conformation of DNA. For linear DNA modeled as a wormlike chain, the distribution of hops available to a protein exhibits long, power-law tails that make the long-time displacement along the strand superdiffusive. Our analysis predicts effective superdiffusion coefficients for given nonspecific binding and unbinding rate parameters. Translocation rate exhibits a maximum at intermediate values of the binding rate constant, while search efficiency is optimized at larger binding rate constant values. Thus, our theory predicts a region of values of the nonspecific binding and unbinding rate parameters that balance the protein translocation rate and the efficiency of the search. Published data for several proteins falls within this predicted region of parameter values.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Tension-dependent structural deformation alters single-molecule transition kinetics

Bariz Sudhanshu; Shirley S. Mihardja; Elena F. Koslover; Shafigh Mehraeen; Carlos Bustamante; Andrew J. Spakowitz

We analyze the response of a single nucleosome to tension, which serves as a prototypical biophysical measurement where tension-dependent deformation alters transition kinetics. We develop a statistical-mechanics model of a nucleosome as a wormlike chain bound to a spool, incorporating fluctuations in the number of bases bound, the spool orientation, and the conformations of the unbound polymer segments. With the resulting free-energy surface, we perform dynamic simulations that permit a direct comparison with experiments. This simple approach demonstrates that the experimentally observed structural states at nonzero tension are a consequence of the tension and that these tension-induced states cease to exist at zero tension. The transitions between states exhibit substantial deformation of the unbound polymer segments. The associated deformation energy increases with tension; thus, the application of tension alters the kinetics due to tension-induced deformation of the transition states. This mechanism would arise in any system where the tether molecule is deformed in the transition state under the influence of tension.


Journal of Chemical Physics | 2010

Interpolation schemes for peptide rearrangements

Marianne Bauer; Birgit Strodel; Szilard N. Fejer; Elena F. Koslover; David J. Wales

A variety of methods (in total seven) comprising different combinations of internal and Cartesian coordinates are tested for interpolation and alignment in connection attempts for polypeptide rearrangements. We consider Cartesian coordinates, the internal coordinates used in CHARMM, and natural internal coordinates, each of which has been interfaced to the OPTIM code and compared with the corresponding results for united-atom force fields. We show that aligning the methylene hydrogens to preserve the sign of a local dihedral angle, rather than minimizing a distance metric, provides significant improvements with respect to connection times and failures. We also demonstrate the superiority of natural coordinate methods in conjunction with internal alignment. Checking the potential energy of the interpolated structures can act as a criterion for the choice of the interpolation coordinate system, which reduces failures and connection times significantly.


Soft Matter | 2013

Discretizing elastic chains for coarse-grained polymer models

Elena F. Koslover; Andrew J. Spakowitz

Studying the statistical and dynamic behavior of semiflexible polymers under complex conditions generally requires discretizing the polymer into a sequence of beads for purposes of simulation. We present a novel approach for generating coarse-grained, discretized polymer models designed to reproduce the polymer statistics at intermediate to long lengths. Our versatile model allows for an arbitrary discretization length and is accurate over a larger range of length scales than the traditional bead–rod and bead–spring models. In its generality, the discrete, stretchable, shearable wormlike chain (dssWLC) model incorporates the anisotropic elasticity inherent in a semielastic chain on intermediate length scales. We demonstrate quantitatively the statistical accuracy of this model at different discretizations, thereby allowing for efficient selection of the number of segments to be simulated. The approach presented in this work provides a systematic procedure for generating coarse-grained discrete models to probe physical properties of a semielastic polymer at arbitrary length scales.


Journal of Physics: Condensed Matter | 2015

Thermodynamic model of heterochromatin formation through epigenetic regulation

Peter J. Mulligan; Elena F. Koslover; Andrew J. Spakowitz

Gene regulation in eukaryotes requires the segregation of silenced genomic regions into densely packed heterochromatin, leaving the active genes in euchromatin regions more accessible. We introduce a model that connects the presence of epigenetically inherited histone marks, methylation at histone 3 lysine-9, to the physical compaction of chromatin fibers via the binding of heterochromatin protein 1 (HP1). Our model demonstrates some of the key physical features that are necessary to explain experimental observations. In particular, we demonstrate that strong cooperative interactions among the HP1 proteins are necessary to see the phase segregation of heterochromatin and euchromatin regions. We also explore how the cell can use the concentration of HP1 to control condensation and under what circumstances there is a threshold of methylation over which the fibers will compact. Finally, we consider how different potential in vivo fiber structures as well as the flexibility of the histone 3 tail can affect the bridging of HP1. Many of the observations that we make about the HP1 system are guided by general thermodynamics principles and thus could play a role in other DNA organizational processes such as the binding of linker histones.


Journal of Chemical Physics | 2007

Geometry optimization for peptides and proteins : Comparison of Cartesian and internal coordinates

Elena F. Koslover; David J. Wales

We present the results of several benchmarks comparing the relative efficiency of different coordinate systems in optimizing polypeptide geometries. Cartesian, natural internal, and primitive internal coordinates are employed in quasi-Newton minimization for a variety of biomolecules. The peptides and proteins used in these benchmarks range in size from 16 to 999 residues. They vary in complexity from polyalanine helices to a beta-barrel enzyme. We find that the relative performance of the different coordinate systems depends on the parameters of the optimization method, the starting point for the optimization, and the size of the system studied. In general, internal coordinates were found to be advantageous for small peptides. For larger structures, Cartesians appear to be more efficient for empirical potentials where the energy and gradient can be evaluated relatively quickly compared to the cost of the coordinate transformations.

Collaboration


Dive into the Elena F. Koslover's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge