Elena Formaggio
University of Verona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elena Formaggio.
Journal of Cell Biology | 2008
Matteo Bergami; Spartaco Santi; Elena Formaggio; Cinzia Cagnoli; Claudia Verderio; Robert Blum; Benedikt Berninger; Michela Matteoli; Marco Canossa
Activity-dependent secretion of brain-derived neurotrophic factor (BDNF) is thought to enhance synaptic plasticity, but the mechanisms controlling extracellular availability and clearance of secreted BDNF are poorly understood. We show that BDNF is secreted in its precursor form (pro-BDNF) and is then cleared from the extracellular space through rapid uptake by nearby astrocytes after θ-burst stimulation in layer II/III of cortical slices, a paradigm resulting in long-term potentiation of synaptic transmission. Internalization of pro-BDNF occurs via the formation of a complex with the pan-neurotrophin receptor p75 and subsequent clathrin-dependent endocytosis. Fluorescence-tagged pro-BDNF and real-time total internal reflection fluorescence microscopy in cultured astrocytes is used to monitor single endocytic vesicles in response to the neurotransmitter glutamate. We find that endocytosed pro-BDNF is routed into a fast recycling pathway for subsequent soluble NSF attachment protein receptor–dependent secretion. Thus, astrocytes contain an endocytic compartment competent for pro-BDNF recycling, suggesting a specialized form of bidirectional communication between neurons and glia.
Journal of Molecular Neuroscience | 2005
Claudio Costantini; Filippo Rossi; Elena Formaggio; Roberto Bernardoni; Daniela Cecconi; Vittorina Della-Bianca
The accumulation of β-amyloid (Aβ) peptide is a key pathogenic event in Alzheimer’s disease. Previous studies have shown that Aβ peptide can damage neurons by activating the p75 neurotrophin receptor (p75NTR). However, the signaling pathway leading to neuronal cell death is not completely understood. By using a neuroblastoma cell line devoid of neurotrophin receptors and engineered to express either a full-length or a death domain (DD)-truncated form of p75NTR, we demonstrated that Aβ peptide activates the mitogen-activated protein kinases (MAPKs) p38 and c-Jun N-terminal kinase (JNK). We also found that Aβ peptide induces the translocation of nuclear factor-κB (NF-κB). These events depend on the DD of p75NTR. β-Amyloid (Aβ) peptide was found not to be toxic when the above interactors were inhibited, indicating that they are required for Aβ-induced neuronal cell death. p75 neurotrophin receptor (p75NTR)-expressing cells became resistant to Aβ toxicity when transfected with dominant-negative mutants of MAPK kinases 3, 4, or 6 (MKK3, MKK4, or MKK6), the inhibitor of κBα, or when treated with chemical inhibitors of p38 and JNK. Furthermore, p75NTR-expressing cells became resistant to Aβ peptide upon transfection with a dominant-negative mutant of p53. These results were obtained in the presence of normal p38 and JNK activation, indicating that p53 acts downstream of p38 and JNK. Finally, we demonstrated that NF-κB activation is dependent on p38 and JNK activation. Therefore, our data suggest a signaling pathway in which Aβ peptide binds to p75NTR and activates p38 and JNK in a DD-dependent manner, followed by NF-κB translocation and p53 activation.
Neuroscience Research | 2008
Elena Formaggio; Cinzia Cantù; Christian Chiamulera; Guido Fumagalli
In this work, we define a GFP-tagged version of the p75 neurotrophin receptor (p75GFP) as a useful molecular tool for studying its distribution and cellular dynamics. Expression and subcellular localization of p75GFP have been characterized in non-neuronal (HEK 293) and in neuronal (cortical and hippocampal) cells. By monitoring movements of intracellular p75GFP in living cultured hippocampal neurons, we found that the chimeric protein was transported by tubulo-vesicular structures both anterogradely (0.1-0.5microm/s) and retrogradely (0.1-1.1microm/s), with a faster component in retrogradely moving structures. Movements of the p75GFP-containing structures were inhibited by treatment with the microtubule-disrupting agent nocodazole. Our data indicate that p75GFP is a reliable tool for studying spatial and cellular properties of p75 in CNS neurons and that p75 transport inside neurons is mediated by microtubule-associated motors.
Neuroreport | 2009
Jan Johansson; Elena Formaggio; Guido Fumagalli; Cristiano Chiamulera
In this study, possible involvements of choline and nicotinic acetylcholine receptors (nAChRs) in neurotrophic-related neuronal plasticity were investigated. Primary cell cultures from rat cerebral cortex were exposed for 72 h to the &agr;7 nAChR selective agonist choline and protein expression levels of the neurotrophin receptors p75, TrkA, TrkB and TrkC were examined. The results revealed a choline-induced attenuation of the TrkB expression, whereas the other neurotrophin receptors were not affected. Further analysis of choline-exposed cell cultures showed an increased protein level of the TrkB ligand brain-derived neurotrophic factor (BDNF). This increase was obtained in cell cultures where the &agr;7 nAChR subunit was detected, but not in younger cell cultures where this subunit could not be detected. It is speculated that a choline-induced change of &agr;7 nAChRs activity may have resulted in the observed increase of BDNF level and down-regulation of the TrkB receptor.
Muscle & Nerve | 2012
Annalisa Bernareggi; Elisa Luin; Elena Formaggio; Guido Fumagalli; Paola Lorenzon
Before the nerve contacts the skeletal muscle, the nicotinic acetylcholine receptors (nAChRs) form aggregates known as prepatterned clusters. We investigated their role in the occurrence of Ca2+ spikes and twitching during myogenesis.
Neuroscience Letters | 2008
Cristiano Chiamulera; Marzia Di Chio; Vincenzo Tedesco; C. Cantù; Elena Formaggio; Guido Fumagalli
The scope of this study was to test whether increased levels of the extracellular matrix molecule (ECM) agrin might enhance nicotine effects on those molecular mechanisms that initiate neuroadaptative processes in the hippocampus, a key brain area for learning and memory. We studied the effects of repetitive applications of neuronal agrin to primary hippocampal cell culture on nicotine-induced phosphorylated cyclic AMP response element-binding protein (pCREB) expression, a marker of neuroadaptation, by using immunofluorescence-based assessment of pCREB-positive neurons. We also tested agrin effects on nicotine-induced expression of a marker of metabolic activation, the immediate early gene c-fos. Agrin was shown to significantly enhance nicotine-induced pCREB, but not c-fos, expression. By using Western blotting analysis, cumulative agrin has been shown to increase nicotine-induced pCREB phosphorylation. These analyses, however, showed that inhibition of the CaMKII pathway blocked general pCREB phosphorylation, whereas inhibition of the MAPK pathway potentiated the synergistic effect of cumulative agrin and nicotine. These findings suggest that increasing the concentration of an ECM molecule, i.e. agrin, may enhance nicotine effects on pCREB and that both MAPK and CaMKII signalling may play a regulatory role.
Molecular and Cellular Neuroscience | 2011
Elena Formaggio; A.C. Dalfini; F. Fazzini; Guido Fumagalli; Cristiano Chiamulera
In vitro findings suggested a role for the p75 neurotrophin receptor in the maturation of GABAergic neurons residing in the basal forebrain (BF), a brain area known to have p75 expression only on cholinergic neurons. We document here the presence of GABAergic neurons which express p75 in the BF in vivo. Colocalization of p75 with the cholinergic marker choline-acetyltransferase (ChAT) and/or the GABAergic marker glutamic acid decarboxylase-67 (GAD67) was investigated in the BF at birth, at two weeks, and in adulthood. A subset of GAD67(+) neurons was p75(+) (p75(+)/GAD67(+)) but ChAT(-) in the substantia innominata and nucleus basalis magnocellularis at birth, whereas all p75(+)/GAD67(+) neurons were also ChAT(+) from two weeks onward. These phenotypic features suggest that a subpopulation of GABAergic neurons could be sensitive to neurotrophins during brain maturation. To unravel this issue, we then pursued a functional analysis by assessing p75 expression profile, and its modulation by nerve growth factor (NGF) or brain-derived neurotrophic factor (BDNF) in primary BF cell cultures. NGF increased p75 expression exclusively in cholinergic neurons, whereas BDNF induced p75 expression only in a subset of GABAergic neurons (p75(+)/GAD67(+)/ChAT(-)) through a p75- and tyrosine-kinase-dependent mechanism. The latter findings point to a selective role of BDNF in the induction of p75 expression in BF GABAergic neurons. Altogether these results confirm the role of neurotrophins in the developing and mature circuitry of GABAergic neurons in the BF regions.
American Journal of Physiology-cell Physiology | 2008
Elena Bandi; Marko Jevsek; Tomaz Mars; Mihaela Jurdana; Elena Formaggio; Marina Sciancalepore; Guido Fumagalli; Zoran Grubič; Fabio Ruzzier; Paola Lorenzon
Experimental Cell Research | 2005
Claudio Costantini; Vittorina Della-Bianca; Elena Formaggio; Christian Chiamulera; Alessio Montresor; Filippo Rossi
Neuronal plasticity and neurodegenerative disorders: dysfunction and treatment | 2008
Anna Dalfini; Elena Formaggio; Francesco Bifari; D. Young; Cristiano Chiamulera; Guido Fumagalli