Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elena Garreta is active.

Publication


Featured researches published by Elena Garreta.


Nature Biotechnology | 2008

Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes

Trond Aasen; Angel Raya; Maria J. Barrero; Elena Garreta; Antonella Consiglio; Federico Gonzalez; Rita Vassena; Josipa Bili cacute; Vladimir Pekarik; Gustavo Tiscornia; Michael J. Edel; Stéphanie Boué; Juan Carlos Izpisua Belmonte

The utility of induced pluripotent stem (iPS) cells for investigating the molecular logic of pluripotency and for eventual clinical application is limited by the low efficiency of current methods for reprogramming. Here we show that reprogramming of juvenile human primary keratinocytes by retroviral transduction with OCT4, SOX2, KLF4 and c-MYC is at least 100-fold more efficient and twofold faster compared with reprogramming of human fibroblasts. Keratinocyte-derived iPS (KiPS) cells appear indistinguishable from human embryonic stem cells in colony morphology, growth properties, expression of pluripotency-associated transcription factors and surface markers, global gene expression profiles and differentiation potential in vitro and in vivo. To underscore the efficiency and practicability of this technology, we generated KiPS cells from single adult human hairs. Our findings provide an experimental model for investigating the bases of cellular reprogramming and highlight potential advantages of using keratinocytes to generate patient-specific iPS cells.


Nature | 2009

Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells

Angel Raya; Ignasi Rodríguez-Pizà; Guillermo Guenechea; Rita Vassena; Susana Navarro; Maria J. Barrero; Antonella Consiglio; Maria Castella; Paula Río; Eduard Sleep; Federico Gonzalez; Gustavo Tiscornia; Elena Garreta; Trond Aasen; Anna Veiga; Inder M. Verma; Jordi Surrallés; Juan A. Bueren; Juan Carlos Izpisua Belmonte

The generation of induced pluripotent stem (iPS) cells has enabled the derivation of patient-specific pluripotent cells and provided valuable experimental platforms to model human disease. Patient-specific iPS cells are also thought to hold great therapeutic potential, although direct evidence for this is still lacking. Here we show that, on correction of the genetic defect, somatic cells from Fanconi anaemia patients can be reprogrammed to pluripotency to generate patient-specific iPS cells. These cell lines appear indistinguishable from human embryonic stem cells and iPS cells from healthy individuals. Most importantly, we show that corrected Fanconi-anaemia-specific iPS cells can give rise to haematopoietic progenitors of the myeloid and erythroid lineages that are phenotypically normal, that is, disease-free. These data offer proof-of-concept that iPS cell technology can be used for the generation of disease-corrected, patient-specific cells with potential value for cell therapy applications.


Stem Cells | 2011

Complete Meiosis from Human Induced Pluripotent Stem Cells

Cristina Eguizabal; Nuria Montserrat; Rita Vassena; M. Barragan; Elena Garreta; L. Garcia-Quevedo; Francesca Vidal; Alessandra Giorgetti; Anna Veiga; Jc Izpisua Belmonte

Gamete failure‐derived infertility affects millions of people worldwide; for many patients, gamete donation by unrelated donors is the only available treatment. Embryonic stem cells (ESCs) can differentiate in vitro into germ‐like cells, but they are genetically unrelated to the patient. Using an in vitro protocol that aims at recapitulating development, we have achieved, for the first time, complete differentiation of human induced pluripotent stem cells (hiPSCs) to postmeiotic cells. Unlike previous reports using human ESCs, postmeiotic cells arose without the over‐expression of germline related transcription factors. Moreover, we consistently obtained haploid cells from hiPSCs of different origin (keratinocytes and cord blood), produced with a different number of transcription factors, and of both genetic sexes, suggesting the independence of our approach from the epigenetic memory of the reprogrammed somatic cells. Our work brings us closer to the production of personalized human gametes in vitro. STEM CELLS 2011;29:1186‐1195


Journal of Biological Chemistry | 2011

Simple Generation of Human Induced Pluripotent Stem Cells Using Poly-β-amino Esters As the Non-viral Gene Delivery System

Nuria Montserrat; Elena Garreta; Federico Gonzalez; Jordán Gutiérrez; Cristina Eguizabal; Victor Ramos; Salvador Borrós; Juan Carlos Izpisua Belmonte

Reprogramming of somatic cells to induced pluripotent stem (iPS) cells can be achieved by the delivery of a combination of transcription factors, including Oct4, Sox2, Klf4, and c-Myc. Retroviral and lentiviral vectors are commonly used to express these four reprogramming factors separately and obtain reprogrammed iPS cells. Although efficient and reproducible, these approaches involve the time-consuming and labor-intensive production of retroviral or lentiviral particles together with a high risk of working with potentially harmful viruses overexpressing potent oncogenes, such as c-Myc. Here, we describe a simple method to produce bona fide iPS cells from human fibroblasts using poly-β-amino esters as the transfection reagent for the delivery of a single CAG-driven polycistronic plasmid expressing Oct4, Sox2, Klf4, c-Myc, and a GFP reporter gene (OSKMG). We demonstrate for the first time that poly-β-amino esters can be used to deliver a single polycistronic reprogramming vector into human fibroblasts, achieving significantly higher transfection efficiency than with conventional transfection reagents. After a protocol of serial transfections using poly-β-amino esters, we report a simple methodology to generate human iPS cells from human fibroblasts avoiding the use of viral vectors.


Cell Transplantation | 2012

Generation of feeder-free pig induced pluripotent stem cells without Pou5f1.

Nuria Montserrat; Lorena de Oñate; Elena Garreta; Federico Gonzalez; Antonio Adamo; Cristina Eguizabal; Sophia Häfner; Rita Vassena; Juan Carlos Izpisua Belmonte

The pig represents an ideal large-animal model, intermediate between rodents and humans, for the preclinical assessment of emerging cell therapies. As no validated pig embryonic stem (pES) cell lines have been derived so far, pig induced pluripotent stem cells (piPSCs) should offer an alternative source of undifferentiated cells to advance regenerative medicine research from bench to clinical trial. We report here for the first time the derivation of piPSCs from adult fibroblast with only three transcription factors: Sox2 (sex determining region Y-box 2), Klf4 (Krüppel-like factor 4), and c-Myc (avian myelocytomatosis viral oncogene homolog). We have been able to demonstrate that exogenous Pou5f1 (POU domain class 5 transcription factor 1; abbreviated as Octamer-4: Oct4) is dispensable to achieve and maintain pluripotency in the generation of piPSCs. To the best of our knowledge, this is also the first report of somatic reprogramming in any species without the overexpression, either directly or indirectly, of Oct4. Moreover, we were able to generate piPSCs without the use of feeder cells, approaching thus xeno-free conditions. Our work paves the way for the derivation of clinical grade piPSCs for regenerative medicine.


Journal of The Mechanical Behavior of Biomedical Materials | 2014

Inhomogeneity of local stiffness in the extracellular matrix scaffold of fibrotic mouse lungs.

Esther Melo; Nayra Cardenes; Elena Garreta; Tomas Luque; Mauricio Rojas; Daniel Navajas; Ramon Farré

Lung disease models are useful to study how cell engraftment, proliferation and differentiation are modulated in lung bioengineering. The aim of this work was to characterize the local stiffness of decellularized lungs in aged and fibrotic mice. Mice (2- and 24-month old; 14 of each) with lung fibrosis (N=20) and healthy controls (N=8) were euthanized after 11 days of intratracheal bleomycin (fibrosis) or saline (controls) infusion. The lungs were excised, decellularized by a conventional detergent-based (sodium-dodecyl sulfate) procedure and slices of the acellular lungs were prepared to measure the local stiffness by means of atomic force microscopy. The local stiffness of the different sites in acellular fibrotic lungs was very inhomogeneous within the lung and increased according to the degree of the structural fibrotic lesion. Local stiffness of the acellular lungs did not show statistically significant differences caused by age. The group of mice most affected by fibrosis exhibited local stiffness that were ~2-fold higher than in the control mice: from 27.2±1.64 to 64.8±7.1kPa in the alveolar septa, from 56.6±4.6 to 99.9±11.7kPa in the visceral pleura, from 41.1±8.0 to 105.2±13.6kPa in the tunica adventitia, and from 79.3±7.2 to 146.6±28.8kPa in the tunica intima. Since acellular lungs from mice with bleomycin-induced fibrosis present considerable micromechanical inhomogeneity, this model can be a useful tool to better investigate how different degrees of extracellular matrix lesion modulate cell fate in the process of organ bioengineering from decellularized lungs.


FEBS Journal | 2016

Regenerative strategies for kidney engineering

Nuria Montserrat; Elena Garreta; Juan Carlos Izpisua Belmonte

The kidney is the most important organ for water homeostasis and waste excretion. It performs several important physiological functions for homeostasis: it filters the metabolic waste out of circulation, regulates body fluid balances, and acts as an immune regulator and modulator of cardiovascular physiology. The development of in vitro renal disease models with pluripotent stem cells (both human embryonic stem cells and induced pluripotent stem cells) and the generation of robust protocols for in vitro derivation of renal‐specific‐like cells from patient induced pluripotent stem cells have just emerged. Here we review major findings in the field of kidney regeneration with a major focus on the development of stepwise protocols for kidney cell production from human pluripotent stem cells and the latest advances in kidney bioengineering (i.e. decellularized kidney scaffolds and bioprinting). The possibility of generating renal‐like three‐dimensional structures to be recellularized with renal‐derived induced pluripotent stem cells may offer new avenues to develop functional kidney grafts on‐demand.


Biomaterials | 2016

Myocardial commitment from human pluripotent stem cells: Rapid production of human heart grafts.

Elena Garreta; Lorena de Oñate; M. Eugenia Fernández-Santos; Roger Oria; Carolina Tarantino; Andreu M. Climent; Andrés Marco; Mireia Samitier; Elena Martínez; Maria Valls-Margarit; Rafael Matesanz; Doris A. Taylor; Francisco Fernández-Avilés; Juan Carlos Izpisua Belmonte; Nuria Montserrat

Genome editing on human pluripotent stem cells (hPSCs) together with the development of protocols for organ decellularization opens the door to the generation of autologous bioartificial hearts. Here we sought to generate for the first time a fluorescent reporter human embryonic stem cell (hESC) line by means of Transcription activator-like effector nucleases (TALENs) to efficiently produce cardiomyocyte-like cells (CLCs) from hPSCs and repopulate decellularized human heart ventricles for heart engineering. In our hands, targeting myosin heavy chain locus (MYH6) with mCherry fluorescent reporter by TALEN technology in hESCs did not alter major pluripotent-related features, and allowed for the definition of a robust protocol for CLCs production also from human induced pluripotent stem cells (hiPSCs) in 14 days. hPSCs-derived CLCs (hPSCs-CLCs) were next used to recellularize acellular cardiac scaffolds. Electrophysiological responses encountered when hPSCs-CLCs were cultured on ventricular decellularized extracellular matrix (vdECM) correlated with significant increases in the levels of expression of different ion channels determinant for calcium homeostasis and heart contractile function. Overall, the approach described here allows for the rapid generation of human cardiac grafts from hPSCs, in a total of 24 days, providing a suitable platform for cardiac engineering and disease modeling in the human setting.


Nephron | 2018

Studying Kidney Disease Using Tissue and Genome Engineering in Human Pluripotent Stem Cells

Elena Garreta; Federico Gonzalez; Nuria Montserrat

Kidney morphogenesis and patterning have been extensively studied in animal models such as the mouse and zebrafish. These seminal studies have been key to define the molecular mechanisms underlying this complex multistep process. Based on this knowledge, the last 3 years have witnessed the development of a cohort of protocols allowing efficient differentiation of human pluripotent stem cells (hPSCs) towards defined kidney progenitor populations using two-dimensional (2D) culture systems or through generating organoids. Kidney organoids are three-dimensional (3D) kidney-like tissues, which are able to partially recapitulate kidney structure and function in vitro. The current possibility to combine state-of-the art tissue engineering with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems 9 (Cas9)-mediated genome engineering provides an unprecedented opportunity for studying kidney disease with hPSCs. Recently, hPSCs with genetic mutations introduced through CRISPR/Cas9-mediated genome engineering have shown to produce kidney organoids able to recapitulate phenotypes of polycystic kidney disease and glomerulopathies. This mini review provides an overview of the most recent advances in differentiation of hPSCs into kidney lineages, and the latest implementation of the CRISPR/Cas9 technology in the organoid setting, as promising platforms to study human kidney development and disease.


Current Transplantation Reports | 2018

Roadblocks in the Path of iPSC to the Clinic

Elena Garreta; Sonia Sanchez; Jeronimo Lajara; Nuria Montserrat; Juan Carlos Izpisua Belmonte

Purpose of ReviewThe goal of this paper is to highlight the major challenges in the translation of human pluripotent stem cells into a clinical setting.Recent FindingsInnate features from human induced pluripotent stem cells (hiPSCs) positioned these patient-specific cells as an unprecedented cell source for regenerative medicine applications. Immunogenicity of differentiated iPSCs requires more research towards the definition of common criteria for the evaluation of innate and host immune responses as well as in the generation of standardized protocols for iPSC generation and differentiation. The coming years will resolve ongoing clinical trials using both human embryonic stem cells (hESCs) and hiPSCs providing exciting information for the optimization of potential clinical applications of stem cell therapies.SummaryRapid advances in the field of iPSCs generated high expectations in the field of regenerative medicine. Understanding therapeutic applications of iPSCs certainly needs further investigation on autologous/allogenic iPSC transplantation.

Collaboration


Dive into the Elena Garreta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Carlos Izpisua Belmonte

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Esther Melo

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Ramon Farré

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomas Luque

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Joan E. Nichols

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge