Elena Gonzalez-Rey
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elena Gonzalez-Rey.
Gut | 2009
Elena Gonzalez-Rey; P Anderson; M A González; L Rico; D Büscher; Mario Delgado
Background and aims: Inflammatory bowel diseases (IBDs) are associated with uncontrolled innate and adaptive immunity against normal constituents, including commensal bacteria and microbial products. Mesenchymal stem cells (MSCs) suppress effector T cell responses and have beneficial effects in various immune disorders. This work investigates the therapeutic effects of human adipose-derived MSCs (hASCs) in various models of IBD and sepsis. Methods: Acute and chronic colitis was induced in mice with dextran sulfate sodium. Sepsis was induced by caecal ligation and puncture or by endotoxin injection. Colitic and septic mice were treated intraperitoneally with hASCs or murine ASCs, and diverse disease clinical signs and mortality were determined. The levels of various inflammatory cytokines and chemokines, T helper 1(Th1)-type response and generation of regulatory T cells (Treg) were determined in affected organs. Results: Systemic infusion of ASCs significantly ameliorated the clinical and histopathological severity of colitis, abrogating weight loss, diarrhoea and inflammation, and increasing survival. The therapeutic effect was associated with downregulation of the Th1-driven inflammatory responses. ASCs decreased a wide panel of inflammatory cytokines and chemokines and increased interleuklin 10 (IL10), acting on macrophages. hASCs also impaired Th1 cell activation in both colonic mucosa and draining lymph nodes. The induction of IL10-secreting Treg was partially involved in the therapeutic effect of hASCs. Moreover, ASCs protected from severe sepsis by reducing the infiltration of inflammatory cells in various target organs and by downregulating the production of various inflammatory mediators. Conclusions: hASCs emerge as key regulators of immune/inflammatory responses in vivo and as attractive candidates for cell-based treatments for IBD and sepsis.
Arthritis & Rheumatism | 2009
Manuel A. González; Elena Gonzalez-Rey; Laura Rico; Dirk Büscher; Mario Delgado
OBJECTIVE Rheumatoid arthritis (RA) is a chronic autoimmune disease caused by loss of immunologic self tolerance and characterized by chronic joint inflammation. Adult mesenchymal stem cells (MSCs) were recently found to suppress effector T cell responses and to have beneficial effects in various immune disorders. The purpose of this study was to examine a new therapeutic strategy for RA based on the administration of human adipose-derived MSCs (AD-MSCs). METHODS DBA/1 mice with collagen-induced arthritis were treated with human AD-MSCs after disease onset, and clinical scores were determined. Inflammatory response was determined by measuring the levels of different mediators of inflammation in the joints and serum. The Th1-mediated autoreactive response was evaluated by determining the proliferative response and cytokine profile of draining lymph node cells stimulated with the autoantigen. The number of Treg cells and the suppressive capacity on self-reactive Th1 cells were also determined. RESULTS Systemic infusion of human AD-MSCs significantly reduced the incidence and severity of experimental arthritis. This therapeutic effect was mediated by down-regulating the 2 deleterious disease components: the Th1-driven autoimmune and inflammatory responses. Human AD-MSCs decreased the production of various inflammatory cytokines and chemokines, decreased antigen-specific Th1/Th17 cell expansion, and induced the production of antiinflammatory interleukin-10 in lymph nodes and joints. Human AD-MSCs also induced de novo generation of antigen-specific CD4+CD25+FoxP3+ Treg cells with the capacity to suppress self-reactive T effector responses. CONCLUSION Human AD-MSCs emerge as key regulators of immune tolerance by inducing the generation/activation of Treg cells and are thus attractive candidates for a cell-based therapy for RA.
Annals of the Rheumatic Diseases | 2010
Elena Gonzalez-Rey; Manuel A. González; Nieves Varela; Francisco O'Valle; Pedro Hernández-Cortés; Laura Rico; Dirk Büscher; Mario Delgado
Objectives: Adult mesenchymal stem cells were recently found to suppress effector T cell and inflammatory responses and have emerged as attractive therapeutic candidates for immune disorders. In rheumatoid arthritis (RA), a loss in the immunological self-tolerance causes the activation of autoreactive T cells against joint components and subsequent chronic inflammation. The aim of this study is to characterise the immunosuppressive activity of human adipose-derived mesenchymal stem cells (hASCs) on collagen-reactive T cells from patients with RA. Methods: The effects of hASCs on collagen-reactive RA human T cell proliferation and cytokine production were investigated, as well as effects on the production of inflammatory mediators by monocytes and fibroblast-like synoviocytes from patients with RA. Results: hASCs suppressed the antigen-specific response of T cells from patients with RA. hASCs inhibited the proliferative response and the production of inflammatory cytokines by collagen-activated CD4 and CD8 T cells. In contrast, the numbers of IL10-producing T cells and monocytes were significantly augmented upon hASC treatment. The suppressive activity of hASCs was cell-to-cell contact dependent and independent. hASCs also stimulated the generation of FoxP3 protein-expressing CD4+CD25+ regulatory T cells, with the capacity to suppress collagen-specific T cell responses. Finally, hASCs downregulated the inflammatory response and the production of matrix-degrading enzymes by synovial cells isolated from patients with RA. Conclusions: The present work identifies hASCs as key regulators of immune tolerance, with the capacity to suppress T cell and inflammatory responses and to induce the generation/activation of antigen-specific regulatory T cells.
Nature Reviews Immunology | 2007
Elena Gonzalez-Rey; Alejo Chorny; Mario Delgado
The induction of antigen-specific tolerance is essential to maintain immune homeostasis, control autoreactive T cells, prevent the onset of autoimmune diseases and achieve tolerance of transplants. Inflammation is a necessary process for eliminating pathogens, but can lead to serious deleterious effects in the host if left unchecked. Identifying the endogenous factors that control immune tolerance and inflammation is a key goal in the field of immunology. In the last decade, various neuropeptides that are produced by immune cells with potent anti-inflammatory actions were found to participate in the maintenance of tolerance in different immunological disorders.
Journal of Immunology | 2008
Alejo Chorny; Per Anderson; Elena Gonzalez-Rey; Mario Delgado
Sepsis, a life-threatening complication of infections and the most common cause of death in intensive care units, is characterized by a hyperactive and out-of-balance network of endogenous proinflammatory cytokines. None of the current therapies are entirely effective, illustrating the need for novel therapeutic approaches. Ghrelin (GHR) is an orexigenic peptide that has emerged as a potential endogenous anti-inflammatory factor. In this study, we show that the delayed administration of GHR protects against the mortality in various models of established endotoxemia and sepsis. The therapeutic effect of GHR is mainly mediated by decreasing the secretion of the high mobility box 1 (HMGB1), a DNA-binding factor that acts as a late inflammatory factor critical for sepsis progression. Macrophages seem to be the major cell targets in the inhibition of HMGB1 secretion, in which GHR blocked its cytoplasmic translocation. Interestingly, we also report that GHR shows a potent antibacterial activity in septic mice and in vitro. Remarkably, GHR also reduces the severity of experimental arthritis and the release of HMGB1 to serum. Therefore, by regulating crucial processes of sepsis, such as the production of early and late inflammatory mediators by macrophages and the microbial load, GHR represents a feasible therapeutic agent for this disease and other inflammatory disorders.
Gut | 2013
Per Anderson; Luciana Souza-Moreira; Maria Morell; Marta Caro; Francisco O'Valle; Elena Gonzalez-Rey; Mario Delgado
Objective To investigate the effect of adipose-derived mesenchymal stromal cells (ASCs) on the activation state of macrophages (MΦ) in vitro, and the potential therapeutic effect of these cells in experimental colitis and sepsis. Design Murine bone marrow-derived macrophages were cultured with ASCs or with ASC conditioned media (ASC-MΦ) and characterised for the expression of several regulatory macrophage markers, including enzymes and cytokines, and for their immunomodulatory capacity in vitro. The therapeutic effect was investigated of ASC-MΦ in two models of experimental inflammatory colitis induced by trinitrobenzene sulphonic acid and dextran sodium sulphate, and in polymicrobial sepsis induced by caecal ligation and puncture. Results ASC-MΦ showed a phenotype that clearly differed from the classically activated macrophages or the alternatively activated macrophages induced by interleukin (IL)-4, characterised by high arginase activity, increased production of IL-10 upon restimulation and potent immunosuppressive activity on T cells and macrophages. Activation of cyclo-oxygenase-2 on ASCs seems to be critically involved in inducing this phenotype. Systemic infusion of ASC-MΦ inhibited colitis in mice, reducing mortality and weight loss while lowering the colonic and systemic levels of inflammatory cytokines. Importantly, therapeutic injection of ASC-MΦ in established chronic colitis alleviated its progression and avoided disease recurrence. Moreover, ASC-MΦ protected from severe sepsis by reducing the infiltration of inflammatory cells into various organs and by downregulating the production of several inflammatory mediators, where ASC-MΦ-derived IL-10 played a critical role. Conclusion ASCs induce a distinct regulatory activation state of macrophages which possess potent immunomodulatory ability and therapeutic potential in inflammatory bowel diseases and sepsis.
Journal of Experimental Medicine | 2006
Elena Gonzalez-Rey; Alejo Chorny; Gema Robledo; Mario Delgado
Cortistatin is a recently discovered cyclic neuropeptide related to somatostatin that has emerged as a potential endogenous antiinflammatory factor based on its production by and binding to immune cells. Because human septic shock involves excessive inflammatory cytokine production, we investigated the effect of cortistatin on the production of inflammatory mediators and its therapeutic action in various murine models of endotoxemia. Cortistatin down-regulated the production of inflammatory mediators by endotoxin-activated macrophages. The administration of cortistatin protected against lethality after cecal ligation and puncture, or injection of bacterial endotoxin or Escherichia coli, and prevented the septic shock-associated histopathology, such as infiltration of inflammatory cells and intravascular disseminated coagulation in various target organs. The therapeutic effect of cortistatin was mediated by decreasing the local and systemic levels of a wide spectrum of inflammatory mediators, including cytokines, chemokines, and acute phase proteins. The combined use of cortistatin and other antiinflammatory peptides was very efficient treating murine septic shock. This work provides the first evidence of cortistatin as a new immunomodulatory factor with the capacity to deactivate the inflammatory response. Cortistatin represents a potential multistep therapeutic agent for human septic shock, to be used in combination with other immunomodulatory agents or as a complement to other therapies.
Journal of Leukocyte Biology | 2005
Mario Delgado; Alejo Chorny; Elena Gonzalez-Rey; Doina Ganea
CD4+CD25+ regulatory T (Treg) cells control the immune response to a variety of antigens, including self‐antigens, and several models support the idea of the peripheral expansion of CD4+CD25+ Treg cells. Although hormones such as estrogen and α‐melanocyte‐stimulating hormone have been recently reported to expand the CD4+CD25+ Foxp3‐expressing Treg cell compartment, little is known about the endogenous factors and mechanisms controlling the peripheral expansion of CD4+CD25+ Treg cells. In this study, we report on the capacity of the vasoactive intestinal peptide (VIP), an immunosuppressive neuropeptide, to induce functional Treg cells in vivo. The administration of VIP together with specific antigen to T cell receptor (TCR)‐transgenic (Tg) mice results in the expansion of the CD4+CD25+, Foxp‐3/neuropilin 1‐expressing T cells, which inhibit responder T cell proliferation through direct cellular contact. In addition to the increase in the number of CD4+CD25+ Treg cells, VIP induces more efficient suppressors on a per‐cell basis. The VIP‐generated CD4+CD25+ Treg cells transfer suppression, inhibit delayed‐type hypersensitivity in TCR‐Tg hosts, and prevent graft‐versus‐host disease in irradiated hosts reconstituted with allogeneic bone marrow.
American Journal of Respiratory and Critical Care Medicine | 2010
Antje Prasse; Gernot Zissel; Niklas Lützen; Jonas Schupp; Rene Schmiedlin; Elena Gonzalez-Rey; Anne Rensing-Ehl; Gerald Bacher; Vera Cavalli; Dorian Bevec; Mario Delgado; Joachim Müller-Quernheim
RATIONALE Previous studies suggest an important immunoregulatory role of vasoactive intestinal peptide (VIP) in experimental models of chronic noninfectious inflammation. Sarcoidosis is characterized by noncaseating epitheloid cell granulomas, where excessive tumor necrosis factor-alpha production by pulmonary macrophages plays a critical role in granuloma formation and disease progression, which may lead to fatal organ dysfunction. OBJECTIVES To test whether inhaled VIP has an immunoregulatory role. Sarcoid alveolitis was used as a prototype of immune-mediated chronic lung inflammation. METHODS In an open clinical phase II study, we treated 20 patients with histologically proved sarcoidosis and active disease with nebulized VIP for 4 weeks. MEASUREMENTS AND MAIN RESULTS VIP inhalation was safe, well-tolerated, and significantly reduced the production of tumor necrosis factor-alpha by cells isolated from bronchoalveolar lavage fluids of these patients. VIP treatment significantly increased the numbers of bronchoalveolar lavage CD4(+)CD127(-)CD25(+) T cells, which showed regulatory activities on conventional effector T cells. In vitro experiments demonstrated the capacity of VIP to convert naive CD4(+)CD25(-) T cells into CD4(+)CD25(+)FoxP3(+) regulatory T cells, suggesting the generation of peripheral regulatory T cells by VIP treatment. CONCLUSIONS This study is the first to show the immunoregulatory effect of VIP in humans, and supports the notion of inhaled VIP as an attractive future therapy to dampen exaggerated immune responses in lung disorders. Thus, the inhalation of neuropeptides may be developed into a new therapeutic principle for chronic inflammatory lung disorders in humans.
Gut | 2006
Elena Gonzalez-Rey; Amelia Fernandez-Martin; Alejo Chorny; Mario Delgado
Background and aim: Urocortin 1 (UCN) and adrenomedullin (AM) are two recently discovered neuropeptides that, due to their distribution and binding to receptors in immune cells, have emerged as potential endogenous anti-inflammatory factors. Crohn’s disease is a chronic debilitating disease characterised by a Th1 driven severe inflammation of the gastrointestinal tract. This study investigated the therapeutic effect of UCN and AM in a murine model of colitis. Methods and results: Treatment with UCN or AM ameliorated significantly the clinical and histopathological severity of the inflammatory colitis, abrogating body weight loss, diarrhoea, and inflammation, and increased the survival rate of colitic mice. The therapeutic effect was associated with downregulation of both inflammatory and Th1 driven autoimmune responses, including regulation of a wide spectrum of inflammatory mediators. In addition, partial involvement of interleukin 10 secreting regulatory cells in this therapeutic effect was demonstrated. Importantly, UCN or AM treatments were therapeutically effective in established colitis and avoided recurrence of the disease. Conclusions: This work identifies UCN and AM as two potent anti-inflammatory factors with the capacity to deactivate the intestinal inflammatory response and restore mucosal immune tolerance at multiple levels. Consequently, both peptides represent novel multistep therapeutic approaches for the treatment of Crohn’s disease and other Th1 mediated inflammatory diseases.