Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elena J. Levin is active.

Publication


Featured researches published by Elena J. Levin.


Nature | 2009

Crystal structure of a bacterial homologue of the kidney urea transporter

Elena J. Levin; Matthias Quick; Ming Zhou

Urea is highly concentrated in the mammalian kidney to produce the osmotic gradient necessary for water re-absorption. Free diffusion of urea across cell membranes is slow owing to its high polarity, and specialized urea transporters have evolved to achieve rapid and selective urea permeation. Here we present the 2.3 Å structure of a functional urea transporter from the bacterium Desulfovibrio vulgaris. The transporter is a homotrimer, and each subunit contains a continuous membrane-spanning pore formed by the two homologous halves of the protein. The pore contains a constricted selectivity filter that can accommodate several dehydrated urea molecules in single file. Backbone and side-chain oxygen atoms provide continuous coordination of urea as it progresses through the filter, and well-placed α-helix dipoles provide further compensation for dehydration energy. These results establish that the urea transporter operates by a channel-like mechanism and reveal the physical and chemical basis of urea selectivity.


Nature | 2011

Crystal structure of a potassium ion transporter, TrkH

Yu Cao; Xiangshu Jin; Hua Huang; Mehabaw Getahun Derebe; Elena J. Levin; Venkataraman Kabaleeswaran; Yaping Pan; Marco Punta; J. Love; Jun Weng; Matthias Quick; Sheng Ye; Brian Kloss; Renato Bruni; Erik Martinez-Hackert; Wayne A. Hendrickson; Burkhard Rost; Jonathan A. Javitch; Kanagalaghatta R. Rajashankar; Youxing Jiang; Ming Zhou

The TrkH/TrkG/KtrB proteins mediate K+ uptake in bacteria and probably evolved from simple K+ channels by multiple gene duplications or fusions. Here we present the crystal structure of a TrkH from Vibrio parahaemolyticus. TrkH is a homodimer, and each protomer contains an ion permeation pathway. A selectivity filter, similar in architecture to those of K+ channels but significantly shorter, is lined by backbone and side-chain oxygen atoms. Functional studies showed that TrkH is selective for permeation of K+ and Rb+ over smaller ions such as Na+ or Li+. Immediately intracellular to the selectivity filter are an intramembrane loop and an arginine residue, both highly conserved, which constrict the permeation pathway. Substituting the arginine with an alanine significantly increases the rate of K+ flux. These results reveal the molecular basis of K+ selectivity and suggest a novel gating mechanism for this large and important family of membrane transport proteins.


Nature | 2013

Structural basis of the alternating-access mechanism in a bile acid transporter

Xiaoming Zhou; Elena J. Levin; Yaping Pan; Jason G. McCoy; Ruchika Sharma; Brian Kloss; Renato Bruni; Matthias Quick; Ming Zhou

Bile acids are synthesized from cholesterol in hepatocytes and secreted through the biliary tract into the small intestine, where they aid in absorption of lipids and fat-soluble vitamins. Through a process known as enterohepatic recirculation, more than 90% of secreted bile acids are then retrieved from the intestine and returned to the liver for resecretion. In humans, there are two Na+-dependent bile acid transporters involved in enterohepatic recirculation, the Na+-taurocholate co-transporting polypeptide (NTCP; also known as SLC10A1) expressed in hepatocytes, and the apical sodium-dependent bile acid transporter (ASBT; also known as SLC10A2) expressed on enterocytes in the terminal ileum. In recent years, ASBT has attracted much interest as a potential drug target for treatment of hypercholesterolaemia, because inhibition of ASBT reduces reabsorption of bile acids, thus increasing bile acid synthesis and consequently cholesterol consumption. However, a lack of three-dimensional structures of bile acid transporters hampers our ability to understand the molecular mechanisms of substrate selectivity and transport, and to interpret the wealth of existing functional data. The crystal structure of an ASBT homologue from Neisseria meningitidis (ASBTNM) in detergent was reported recently, showing the protein in an inward-open conformation bound to two Na+ and a taurocholic acid. However, the structural changes that bring bile acid and Na+ across the membrane are difficult to infer from a single structure. To understand the structural changes associated with the coupled transport of Na+ and bile acids, here we solved two structures of an ASBT homologue from Yersinia frederiksenii (ASBTYf) in a lipid environment, which reveal that a large rigid-body rotation of a substrate-binding domain gives the conserved ‘crossover’ region, where two discontinuous helices cross each other, alternating accessibility from either side of the cell membrane. This result has implications for the location and orientation of the bile acid during transport, as well as for the translocation pathway for Na+.


Nature | 2011

Crystal structure of a phosphorylation-coupled saccharide transporter

Yu Cao; Xiangshu Jin; Elena J. Levin; Hua Huang; Yinong Zong; Matthias Quick; Jun Weng; Yaping Pan; J. Love; Marco Punta; Burkhard Rost; Wayne A. Hendrickson; Jonathan A. Javitch; Kanagalaghatta R. Rajashankar; Ming Zhou

Saccharides have a central role in the nutrition of all living organisms. Whereas several saccharide uptake systems are shared between the different phylogenetic kingdoms, the phosphoenolpyruvate-dependent phosphotransferase system exists almost exclusively in bacteria. This multi-component system includes an integral membrane protein EIIC that transports saccharides and assists in their phosphorylation. Here we present the crystal structure of an EIIC from Bacillus cereus that transports diacetylchitobiose. The EIIC is a homodimer, with an expansive interface formed between the amino-terminal halves of the two protomers. The carboxy-terminal half of each protomer has a large binding pocket that contains a diacetylchitobiose, which is occluded from both sides of the membrane with its site of phosphorylation near the conserved His 250 and Glu 334 residues. The structure shows the architecture of this important class of transporters, identifies the determinants of substrate binding and phosphorylation, and provides a framework for understanding the mechanism of sugar translocation.


Nature | 2015

X-ray structure of a mammalian stearoyl-CoA desaturase.

Yonghong Bai; Jason G. McCoy; Elena J. Levin; Pablo Sobrado; Kanagalaghatta R. Rajashankar; Brian G. Fox; Ming Zhou

Stearoyl-CoA desaturase (SCD) is conserved in all eukaryotes and introduces the first double bond into saturated fatty acyl-CoAs. Because the monounsaturated products of SCD are key precursors of membrane phospholipids, cholesterol esters and triglycerides, SCD is pivotal in fatty acid metabolism. Humans have two SCD homologues (SCD1 and SCD5), while mice have four (SCD1–SCD4). SCD1-deficient mice do not become obese or diabetic when fed a high-fat diet because of improved lipid metabolic profiles and insulin sensitivity. Thus, SCD1 is a pharmacological target in the treatment of obesity, diabetes and other metabolic diseases. SCD1 is an integral membrane protein located in the endoplasmic reticulum, and catalyses the formation of a cis-double bond between the ninth and tenth carbons of stearoyl- or palmitoyl-CoA. The reaction requires molecular oxygen, which is activated by a di-iron centre, and cytochrome b5, which regenerates the di-iron centre. To understand better the structural basis of these characteristics of SCD function, here we crystallize and solve the structure of mouse SCD1 bound to stearoyl-CoA at 2.6 Å resolution. The structure shows a novel fold comprising four transmembrane helices capped by a cytosolic domain, and a plausible pathway for lateral substrate access and product egress. The acyl chain of the bound stearoyl-CoA is enclosed in a tunnel buried in the cytosolic domain, and the geometry of the tunnel and the conformation of the bound acyl chain provide a structural basis for the regioselectivity and stereospecificity of the desaturation reaction. The dimetal centre is coordinated by a unique spacial arrangement of nine conserved histidine residues that implies a potentially novel mechanism for oxygen activation. The structure also illustrates a possible route for electron transfer from cytochrome b5 to the di-iron centre.


Nature | 2013

Gating of the TrkH ion channel by its associated RCK protein TrkA.

Yu Cao; Yaping Pan; Hua Huang; Xiangshu Jin; Elena J. Levin; Brian Kloss; Ming Zhou

TrkH belongs to a superfamily of K+ transport proteins required for growth of bacteria in low external K+ concentrations. The crystal structure of TrkH from Vibrio parahaemolyticus showed that TrkH resembles a K+ channel and may have a gating mechanism substantially different from K+ channels. TrkH assembles with TrkA, a cytosolic protein comprising two RCK (regulate the conductance of K+) domains, which are found in certain K+ channels and control their gating. However, fundamental questions on whether TrkH is an ion channel and how it is regulated by TrkA remain unresolved. Here we show single-channel activity of TrkH that is upregulated by ATP via TrkA. We report two structures of the tetrameric TrkA ring, one in complex with TrkH and one in isolation, in which the ring assumes two markedly different conformations. These results suggest a mechanism for how ATP increases TrkH activity by inducing conformational changes in TrkA.


PLOS Biology | 2014

Structure of a Membrane-Embedded Prenyltransferase Homologous to UBIAD1.

Hua Huang; Elena J. Levin; Shian Liu; Yonghong Bai; Steve W. Lockless; Ming Zhou

A crystal structure of a member of the UbiA family of membrane-embedded prenyltransferases reveals the architecture of the active site and suggests a possible mechanism for catalysis.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Oxidation of NADPH on Kvβ1 inhibits ball-and-chain type inactivation by restraining the chain

Yaping Pan; Jun Weng; Elena J. Levin; Ming Zhou

The Kv1 family voltage-dependent K+ channels assemble with cytosolic β subunits (Kvβ), which are composed of a flexible N terminus followed by a structured core domain. The N terminus of certain Kvβs inactivates the channel by blocking the ion conduction pore, and the core domain is a functional enzyme that uses NADPH as a cofactor. Oxidation of the Kvβ-bound NADPH inhibits inactivation and potentiates channel current, but the mechanism behind this effect is unknown. Here we show that after oxidation, the core domain binds to part of the N terminus, thus restraining it from blocking the channel. The interaction is partially mediated by two negatively charged residues on the core domain and three positively charged ones on the N terminus. These results provide a molecular basis for the coupling between the cellular redox state and channel activity, and establish Kvβ as a target for pharmacological control of Kv1 channels.


Current Opinion in Structural Biology | 2014

Recent progress on the structure and function of the TrkH/KtrB ion channel.

Elena J. Levin; Ming Zhou

Members of the Superfamily of K(+) Transporters (SKT) are integral membrane proteins that mediate the uptake of ions into non-animal cells. Although these proteins are homologous to the well-characterized K(+) channel family, relatively little was known about their transport and gating mechanisms until the recent determination of crystal structures for two SKT proteins, TrkH and KtrB. These structures reveal that the SKT proteins are channels, containing a flexible loop in the middle of the permeation pathway that may act as a gate. Two different conformational changes have been observed for the associated gating rings, suggesting different mechanisms of regulation by the binding of nucleotides.


Sub-cellular biochemistry | 2014

Structure of Urea Transporters

Elena J. Levin; Ming Zhou

Members of the urea transporter (UT) family mediate rapid, selective transport of urea down its concentration gradient. To date, crystal structures of two evolutionarily distant UTs have been solved. These structures reveal a common UT fold involving two structurally homologous domains that encircle a continuous membrane-spanning pore and indicate that UTs transport urea via a channel-like mechanism. Examination of the conserved architecture of the pore, combined with crystal structures of ligand-bound proteins, molecular dynamics simulations, and functional data on permeation and inhibition by a broad range of urea analogs and other small molecules, provides insight into the structural basis of urea permeation and selectivity.

Collaboration


Dive into the Elena J. Levin's collaboration.

Top Co-Authors

Avatar

Ming Zhou

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hua Huang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jason G. McCoy

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Yu Cao

Columbia University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Love

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Weng

Huazhong University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge