Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elena Kamynina is active.

Publication


Featured researches published by Elena Kamynina.


Molecular and Cellular Biology | 2007

Regulation of Proto-Oncogenic Dbl by Chaperone-Controlled, Ubiquitin-Mediated Degradation

Elena Kamynina; Krista P. Kauppinen; Faping Duan; Nora W Muakkassa; Danny Manor

ABSTRACT The dbl proto-oncogene product is a prototype of a growing family of guanine nucleotide exchange factors (GEFs) that stimulate the activation of small GTP-binding proteins from the Rho family. Mutations that result in the loss of proto-Dbls amino terminus produce a variant with constitutive GEF activity and high oncogenic potential. Here, we show that proto-Dbl is a short-lived protein that is kept at low levels in cells by efficient ubiquitination and degradation. The cellular fate of proto-Dbl is regulated by interactions with the chaperones Hsc70 and Hsp90 and the protein-ubiquitin ligase CHIP, and these interactions are mediated by the spectrin domain of proto-Dbl. We show that CHIP is the E3 ligase responsible for ubiquitination and proteasomal degradation of proto-Dbl, while Hsp90 functions to stabilize the protein. Onco-Dbl, lacking the spectrin homology domain, cannot bind these regulators and therefore accumulates in cells at high levels, leading to persistent stimulation of its downstream signaling pathways.


Journal of Biological Chemistry | 2014

Nuclear enrichment of folate cofactors and methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) protect de novo thymidylate biosynthesis during folate deficiency

Martha S. Field; Elena Kamynina; Olufunmilayo C. Agunloye; Rebecca P. Liebenthal; Simon G. Lamarre; Margaret E. Brosnan; John T. Brosnan; Patrick J. Stover

Background: MTHFD1 is the primary source of one-carbon units for thymidylate synthesis. Results: MTHFD1 localizes to the nucleus in folate deficiency and S- and G2/M phases in mammalian cells to support de novo thymidylate biosynthesis. Conclusion: MTHFD1 nuclear localization explains the incorporation of formate into thymidylate during de novo thymidylate biosynthesis. Significance: Nuclear localization of MTHFD1 protects DNA by limiting uracil misincorporation into DNA. Folate-mediated one-carbon metabolism is a metabolic network of interconnected pathways that is required for the de novo synthesis of three of the four DNA bases and the remethylation of homocysteine to methionine. Previous studies have indicated that the thymidylate synthesis and homocysteine remethylation pathways compete for a limiting pool of methylenetetrahydrofolate cofactors and that thymidylate biosynthesis is preserved in folate deficiency at the expense of homocysteine remethylation, but the mechanisms are unknown. Recently, it was shown that thymidylate synthesis occurs in the nucleus, whereas homocysteine remethylation occurs in the cytosol. In this study we demonstrate that methylenetetrahydrofolate dehydrogenase 1 (MTHFD1), an enzyme that generates methylenetetrahydrofolate from formate, ATP, and NADPH, functions in the nucleus to support de novo thymidylate biosynthesis. MTHFD1 translocates to the nucleus in S-phase MCF-7 and HeLa cells. During folate deficiency mouse liver MTHFD1 levels are enriched in the nucleus >2-fold at the expense of levels in the cytosol. Furthermore, nuclear folate levels are resistant to folate depletion when total cellular folate levels are reduced by >50% in mouse liver. The enrichment of folate cofactors and MTHFD1 protein in the nucleus during folate deficiency in mouse liver and human cell lines accounts for previous metabolic studies that indicated 5,10-methylenetetrahydrofolate is preferentially directed toward de novo thymidylate biosynthesis at the expense of homocysteine remethylation during folate deficiency.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Human mutations in methylenetetrahydrofolate dehydrogenase 1 impair nuclear de novo thymidylate biosynthesis

Martha S. Field; Elena Kamynina; David Watkins; David S. Rosenblatt; Patrick J. Stover

Significance These studies have identified that human genetic mutations, which impair the function of the folate-dependent enzyme methylene tetrahydrofolate dehydrogenase I (MTHFD1), depress rates of de novo thymidylate synthesis, elevate uracil levels in human DNA, and increase genome instability. These findings provide insights into the role of MTHFD1 and thymidylate biosynthesis in the etiology of SCID and megaloblastic anemia. An inborn error of metabolism associated with mutations in the human methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) gene has been identified. The proband presented with SCID, megaloblastic anemia, and neurologic abnormalities, but the causal metabolic impairment is unknown. SCID has been associated with impaired purine nucleotide metabolism, whereas megaloblastic anemia has been associated with impaired de novo thymidylate (dTMP) biosynthesis. MTHFD1 functions to condense formate with tetrahydrofolate and serves as the primary entry point of single carbons into folate-dependent one-carbon metabolism in the cytosol. In this study, we examined the impact of MTHFD1 loss of function on folate-dependent purine, dTMP, and methionine biosynthesis in fibroblasts from the proband with MTHFD1 deficiency. The flux of formate incorporation into methionine and dTMP was decreased by 90% and 50%, respectively, whereas formate flux through de novo purine biosynthesis was unaffected. Patient fibroblasts exhibited enriched MTHFD1 in the nucleus, elevated uracil in DNA, lower rates of de novo dTMP synthesis, and increased salvage pathway dTMP biosynthesis relative to control fibroblasts. These results provide evidence that impaired nuclear de novo dTMP biosynthesis can lead to both megaloblastic anemia and SCID in MTHFD1 deficiency.


Journal of Virology | 2013

Effect of Multimerization on Membrane Association of Rous Sarcoma Virus and HIV-1 Matrix Domain Proteins

Robert A. Dick; Elena Kamynina; Volker M. Vogt

ABSTRACT In most retroviruses, plasma membrane (PM) association of the Gag structural protein is a critical step in viral assembly, relying in part on interaction between the highly basic Gag MA domain and the negatively charged inner leaflet of the PM. Assembly is thought to begin with Gag dimerization followed by multimerization, resulting in a hexameric lattice. To directly address the role of multimerization in membrane binding, we fused the MA domains of Rous sarcoma virus (RSV) and HIV-1 to the chemically inducible dimerization domain FK506-binding protein (FKBP) or to the hexameric protein CcmK4 from cyanobacteria. The cellular localization of the resulting green fluorescent protein (GFP)-tagged chimeric proteins was examined by fluorescence imaging, and the association of the proteins with liposomes was quantified by flotation in sucrose gradients, following synthesis in a reticulocyte extract or as purified proteins. Four lipid compositions were tested, representative of liposomes commonly reported in flotation experiments. By themselves, GFP-tagged RSV and HIV-1 MA proteins were largely cytoplasmic, but both hexamerized proteins were highly concentrated at the PM. Dimerization led to partial PM localization for HIV-1 MA. These in vivo effects of multimerization were reproduced in vitro. In flotation analyses, the intact RSV and HIV-1 Gag proteins were more similar to multimerized MA than to monomeric MA. RNA is reported to compete with acidic liposomes for HIV-1 Gag binding, and thus we also examined the effects of RNase treatment or tRNA addition on flotation. tRNA competed with liposomes in the case of some but not all lipid compositions and ionic strengths. Taken together, our results further underpin the model that multimerization is critical for PM association of retroviral Gag proteins. In addition, they suggest that the modulation of membrane binding by RNA, as previously reported for HIV-1, may not hold for RSV.


Journal of Biological Chemistry | 2013

Plekhg4 Is a Novel Dbl Family Guanine Nucleotide Exchange Factor Protein for Rho Family GTPases

Meghana Gupta; Elena Kamynina; Samantha Morley; Stacey Chung; Nora W Muakkassa; Hong Wang; Shayna Brathwaite; Gaurav Sharma; Danny Manor

Background: Plekhg4 is putative guanine nucleotide exchange factor associated with autosomal dominant spinocerebellar ataxia. Results: Plekhg4 is regulated by the heat shock proteins and functions as a bona fide guanine nucleotide exchange factor. Conclusion: Plekhg4 is the first RhoGEF implicated in spinocerebellar ataxia. Significance: Aberrant GTPase signaling is a novel possible mechanism underlying autosomal dominant spinocerebellar ataxia. Mutations in the PLEKHG4 (puratrophin-1) gene are associated with the heritable neurological disorder autosomal dominant spinocerebellar ataxia. However, the biochemical functions of this gene product have not been described. We report here that expression of Plekhg4 in the murine brain is developmentally regulated, with pronounced expression in the newborn midbrain and brainstem that wanes with age and maximal expression in the cerebellar Purkinje neurons in adulthood. We show that Plekhg4 is subject to ubiquitination and proteasomal degradation, and its steady-state expression levels are regulated by the chaperones Hsc70 and Hsp90 and by the ubiquitin ligase CHIP. On the functional level, we demonstrate that Plekhg4 functions as a bona fide guanine nucleotide exchange factor (GEF) that facilitates activation of the small GTPases Rac1, Cdc42, and RhoA. Overexpression of Plekhg4 in NIH3T3 cells induces rearrangements of the actin cytoskeleton, specifically enhanced formation of lamellopodia and fillopodia. These findings indicate that Plekhg4 is an aggregation-prone member of the Dbl family GEFs and that regulation of GTPase signaling is critical for proper cerebellar function.


Biochimie | 2016

MTHFD1 regulates nuclear de novo thymidylate biosynthesis and genome stability.

Martha S. Field; Elena Kamynina; Patrick J. Stover

Disruptions in folate-mediated one-carbon metabolism (FOCM) are associated with risk for several pathologies including developmental anomalies such as neural tube defects and congenital heart defects, diseases of aging including cognitive decline, neurodegeneration and epithelial cancers, and hematopoietic disorders including megaloblastic anemia. However, the causal pathways and mechanisms that underlie these pathologies remain unresolved. Because folate-dependent anabolic pathways are tightly interconnected and best described as a metabolic network, the identification of causal pathways and associated mechanisms of pathophysiology remains a major challenge in identifying the contribution of individual pathways to disease phenotypes. Investigations of genetic mouse models and human inborn errors of metabolism enable a more precise dissection of the pathways that constitute the FOCM network and enable elucidation of causal pathways associated with NTDs. In this overview, we summarize recent evidence that the enzyme MTHFD1 plays an essential role in FOCM in humans and in mice, and that it determines the partitioning of folate-activated one carbon units between the folate-dependent de novo thymidylate and homocysteine remethylation pathways through its regulated nuclear localization. We demonstrate that impairments in MTHFD1 activity compromise both homocysteine remethylation and de novo thymidylate biosynthesis, and provide evidence that MTHFD1-associated disruptions in de novo thymidylate biosynthesis lead to genome instability that may underlie folate-associated immunodeficiency and birth defects.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Arsenic trioxide targets MTHFD1 and SUMO-dependent nuclear de novo thymidylate biosynthesis

Elena Kamynina; Erica R. Lachenauer; Aislyn DiRisio; Rebecca P. Liebenthal; Martha S. Field; Patrick J. Stover

Significance We have identified de novo thymidylate biosynthesis as a target of arsenic at exposure levels observed in human populations. Arsenic enhances methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) small ubiquitin-like modifier (SUMO)-ylation and subsequent proteolytic degradation of MTHFD1 and serine hydroxymethyltransferase (SHMT), resulting in depressed rates of de novo thymidylate synthesis, elevated uracil levels in nuclear DNA, and increased genome instability. These findings provide a molecular mechanism linking clastogenic and teratogenic effects of arsenic to impaired de novo thymidylate synthesis. Arsenic exposure increases risk for cancers and is teratogenic in animal models. Here we demonstrate that small ubiquitin-like modifier (SUMO)- and folate-dependent nuclear de novo thymidylate (dTMP) biosynthesis is a sensitive target of arsenic trioxide (As2O3), leading to uracil misincorporation into DNA and genome instability. Methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) and serine hydroxymethyltransferase (SHMT) generate 5,10-methylenetetrahydrofolate for de novo dTMP biosynthesis and translocate to the nucleus during S-phase, where they form a multienzyme complex with thymidylate synthase (TYMS) and dihydrofolate reductase (DHFR), as well as the components of the DNA replication machinery. As2O3 exposure increased MTHFD1 SUMOylation in cultured cells and in in vitro SUMOylation reactions, and increased MTHFD1 ubiquitination and MTHFD1 and SHMT1 degradation. As2O3 inhibited de novo dTMP biosynthesis in a dose-dependent manner, increased uracil levels in nuclear DNA, and increased genome instability. These results demonstrate that MTHFD1 and SHMT1, which are key enzymes providing one-carbon units for dTMP biosynthesis in the form of 5,10-methylenetetrahydrofolate, are direct targets of As2O3-induced proteolytic degradation, providing a mechanism for arsenic in the etiology of cancer and developmental anomalies.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Folate rescues vitamin B12 depletion-induced inhibition of nuclear thymidylate biosynthesis and genome instability

Ashley Palmer; Elena Kamynina; Martha S. Field; Patrick J. Stover

Significance Vitamin B12 deficiency causes hematological and neurological pathologies by impairing DNA synthesis. The nucleus is shown to be highly sensitive to 5-methyltetrahydrofolate (5-methylTHF) accumulation induced by vitamin B12 depletion in the cytosol, leading to impaired nuclear de novo thymidylate synthesis and genome instability. These effects of the 5-methylTHF trap are exacerbated by folate depletion in nitrous oxide-treated HeLa cells and methionine synthase loss-of-function fibroblasts. These results further our understanding of mechanisms underlying vitamin B12–folate interrelationships in pathologies, including megaloblastic anemia and potentially neural tube defects. Clinical vitamin B12 deficiency can result in megaloblastic anemia, which results from the inhibition of DNA synthesis by trapping folate cofactors in the form of 5-methyltetrahydrofolate (5-methylTHF) and subsequent inhibition of de novo thymidylate (dTMP) biosynthesis. In the cytosol, vitamin B12 functions in the remethylation of homocysteine to methionine, which regenerates THF from 5-methylTHF. In the nucleus, THF is required for de novo dTMP biosynthesis, but it is not understood how 5-methylTHF accumulation in the cytosol impairs nuclear dTMP biosynthesis. The impact of vitamin B12 depletion on nuclear de novo dTMP biosynthesis was investigated in methionine synthase-null human fibroblast and nitrous oxide-treated HeLa cell models. The nucleus was the most sensitive cellular compartment to 5-methylTHF accumulation, with levels increasing greater than fourfold. Vitamin B12 depletion decreased de novo dTMP biosynthesis capacity by 5–35%, whereas de novo purine synthesis, which occurs in the cytosol, was not affected. Phosphorylated histone H2AX (γH2AX), a marker of DNA double-strand breaks, was increased in vitamin B12 depletion, and this effect was exacerbated by folate depletion. These studies also revealed that 5-formylTHF, a slow, tight-binding inhibitor of serine hydroxymethyltransferase (SHMT), was enriched in nuclei, accounting for 35% of folate cofactors, explaining previous observations that nuclear SHMT is not a robust source of one-carbons for de novo dTMP biosynthesis. These findings indicate that a nuclear 5-methylTHF trap occurs in vitamin B12 depletion, which suppresses de novo dTMP biosynthesis and causes DNA damage, accounting for the pathophysiology of megaloblastic anemia observed in vitamin B12 and folate deficiency.


Rare diseases (Austin, Tex.) | 2015

New insights into the metabolic and nutritional determinants of severe combined immunodeficiency

Martha S. Field; Elena Kamynina; David Watkins; David S. Rosenblatt; Patrick J. Stover

Human mutations in MTHFD1 have recently been identified in patients with severe combined immunodeficiency (SCID). SCID results from inborn errors of metabolism that cause impaired T- and B-cell proliferation and function. One of the most common causes of SCID is adenosine deaminase (ADA) deficiency, which ultimately inhibits DNA synthesis and cell division. MTHFD1 has been shown to translocate to the nucleus during S-phase of the cell cycle; this localization is critical for synthesis of thymidyate (dTMP or the “T” base in DNA) and subsequent progression through the cell cycle and cell proliferation. Identification of MTHFD1 mutations that are associated with SCID highlights the potential importance of adequate dTMP synthesis in the etiology of SCID.


Annual Review of Nutrition | 2018

Nuclear Folate Metabolism

Martha S. Field; Elena Kamynina; James Chon; Patrick J. Stover

Despite unequivocal evidence that folate deficiency increases risk for human pathologies, and that folic acid intake among women of childbearing age markedly decreases risk for birth defects, definitive evidence for a causal biochemical pathway linking folate to disease and birth defect etiology remains elusive. The de novo and salvage pathways for thymidylate synthesis translocate to the nucleus of mammalian cells during S- and G2/M-phases of the cell cycle and associate with the DNA replication and repair machinery, which limits uracil misincorporation into DNA and genome instability. There is increasing evidence that impairments in nuclear de novo thymidylate synthesis occur in many pathologies resulting from impairments in one-carbon metabolism. Understanding the roles and regulation of nuclear de novo thymidylate synthesis and its relationship to genome stability will increase our understanding of the fundamental mechanisms underlying folate- and vitamin B12-associated pathologies.

Collaboration


Dive into the Elena Kamynina's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danny Manor

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge