Elena Kaznacheyeva
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elena Kaznacheyeva.
Chemistry & Biology | 2011
Jun Wu; Hsin Pei Shih; Vladimir Vigont; Lori Hrdlicka; Len Diggins; Carol M. Singh; Matt B. Mahoney; Richard Chesworth; Gideon Shapiro; O. A. Zimina; Xuesong Chen; Qingqing Wu; L. N. Glushankova; Michael K. Ahlijanian; Gerhard Koenig; Galina N. Mozhayeva; Elena Kaznacheyeva; Ilya Bezprozvanny
Huntingtons disease (HD) is a neurodegenerative disorder caused by a polyglutamine expansion within Huntingtin (Htt) protein. In the phenotypic screen we identified a class of quinazoline-derived compounds that delayed a progression of a motor phenotype in transgenic Drosophila HD flies. We found that the store-operated calcium (Ca(2+)) entry (SOC) pathway activity is enhanced in neuronal cells expressing mutant Htt and that the identified compounds inhibit SOC pathway in HD neurons. The same compounds exerted neuroprotective effects in glutamate-toxicity assays with YAC128 medium spiny neurons primary cultures. We demonstrated a key role of TRPC1 channels in supporting SOC pathway in HD neurons. We concluded that the TRPC1-mediated neuronal SOC pathway constitutes a novel target for HD treatment and that the identified compounds represent a novel class of therapeutic agents for treatment of HD and possibly other neurodegenerative disorders.
Journal of Biological Chemistry | 1998
Vitalie D. Lupu; Elena Kaznacheyeva; U. Murali Krishna; J. Russell Falck; Ilya Bezprozvanny
The inositol 1,4,5-trisphosphate receptor (InsP3R) plays a key role in intracellular Ca2+ signaling. InsP3R is activated by InsP3 produced from phosphatidylinositol 4,5-bisphosphate (PIP2) by phospholipase C cleavage. Using planar lipid bilayer reconstitution technique, we demonstrate here that rat cerebellar InsP3R forms a stable inhibitory complex with endogenous PIP2. Disruption of InsP3R-PIP2 interaction by specific anti-PIP2 monoclonal antibody resulted in 3–4-fold increase in InsP3R activity and 10-fold shift in apparent affinity for InsP3. Exogenously added PIP2blocks InsP3 binding to InsP3R and inhibits InsP3R activity. Similar results were obtained with a newly synthesized water soluble analog of PIP2, dioctanoyl-(4,5)PIP2, indicating that insertion of PIP2 into membrane is not required to exert its inhibitory effects on the InsP3R. We hypothesize that the functional link between InsP3R and PIP2 described in the present report provides a basis for a local, rapid, and efficient coupling between phospholipase C activation, PIP2hydrolysis, and intracellular Ca2+ wave initiation in neuronal and non-neuronal cells.
Journal of Biological Chemistry | 2005
Vladislav Bugaj; Vadim Alexeenko; Alexander Zubov; Lyuba Glushankova; Anton Nikolaev; Zhengnan Wang; Elena Kaznacheyeva; Ilya Bezprozvanny; Galina N. Mozhayeva
Activation of phospholipase C (PLC)-mediated signaling pathways in non-excitable cells causes the release of calcium (Ca2+) from inositol 1,4,5-trisphosphate (InsP3)-sensitive intracellular Ca2+ stores and activation of Ca2+ influx via plasma membrane Ca2+ channels. The properties and molecular identity of plasma membrane Ca2+ influx channels in non-excitable cells is a focus of intense investigation. In the previous studies we used patch clamp electrophysiology to describe the properties of Ca2+ influx channels in human carcinoma A431 cell lines. Now we extend our studies to human embryonic kidney HEK293 cells. By using a combination of Ca2+ imaging and whole cell and single channel patch clamp recordings we discovered that: 1) HEK293 cells contain four types of plasma membrane Ca2+ influx channels: ICRAC, Imin, Imax, and INS; 2) ICRAC channels are highly Ca2+-selective (PCa/Cs > 1000) and ICRAC single channel conductance is too small for single channel analysis; 3) Imin channels in HEK293 cells display functional properties identical to Imin channels in A431 cells, with single channel conductance of 1.2 pS for divalent cations, 10 pS for monovalent cations, and divalent cation selectivity PBa/K = 20; 4) Imin channels in HEK293 cells are activated by InsP3 and inhibited by phosphatidylinositol 4,5-bisphosphate, but store-independent; 5) when compared with Imin, Imax channels have higher conductance for divalent (17 pS) and monovalent (33 pS) cations, but less selective for divalent cations (PBa/K = 4), 6) Imax channels in HEK293 cells can be activated by InsP3 or by Ca2+ store depletion; 7) INS channels are non-selective (PBa/K = 0.4) and display a single channel conductance of 5 pS; and 8) INS channels are not gated by InsP3 but activated by depletion of intracellular Ca2+ stores. Our findings provide novel information about endogenous Ca2+ channels supporting receptor-operated and store-operated Ca2+ influx pathways in HEK293 cells.
Molecular Neurodegeneration | 2016
Evgeny Nekrasov; Vladimir Vigont; Sergey Klyushnikov; Olga S. Lebedeva; Ekaterina M. Vassina; Alexandra N. Bogomazova; Ilya V. Chestkov; Tatiana A. Semashko; Elena Kiseleva; Lyubov A. Suldina; Pavel A. Bobrovsky; O. A. Zimina; Maria Ryazantseva; Anton Skopin; Illarioshkin Sn; Elena Kaznacheyeva; Maria A. Lagarkova; Sergey L. Kiselev
BackgroundHuntington’s disease (HD) is an incurable hereditary neurodegenerative disorder, which manifests itself as a loss of GABAergic medium spiny (GABA MS) neurons in the striatum and caused by an expansion of the CAG repeat in exon 1 of the huntingtin gene. There is no cure for HD, existing pharmaceutical can only relieve its symptoms.ResultsHere, induced pluripotent stem cells were established from patients with low CAG repeat expansion in the huntingtin gene, and were then efficiently differentiated into GABA MS-like neurons (GMSLNs) under defined culture conditions. The generated HD GMSLNs recapitulated disease pathology in vitro, as evidenced by mutant huntingtin protein aggregation, increased number of lysosomes/autophagosomes, nuclear indentations, and enhanced neuronal death during cell aging. Moreover, store-operated channel (SOC) currents were detected in the differentiated neurons, and enhanced calcium entry was reproducibly demonstrated in all HD GMSLNs genotypes. Additionally, the quinazoline derivative, EVP4593, reduced the number of lysosomes/autophagosomes and SOC currents in HD GMSLNs and exerted neuroprotective effects during cell aging.ConclusionsOur data is the first to demonstrate the direct link of nuclear morphology and SOC calcium deregulation to mutant huntingtin protein expression in iPSCs-derived neurons with disease-mimetic hallmarks, providing a valuable tool for identification of candidate anti-HD drugs. Our experiments demonstrated that EVP4593 may be a promising anti-HD drug.
The Journal of General Physiology | 2003
Konstantin Gusev; Lyuba Glouchankova; Alexander Zubov; Elena Kaznacheyeva; Zhengnan Wang; Ilya Bezprozvanny; Galina N. Mozhayeva
Activation of phospholipase C (PLC)-mediated signaling pathways in nonexcitable cells causes the release of Ca2+ from intracellular Ca2+ stores and activation of Ca2+ influx across the plasma membrane. Two types of Ca2+ channels, highly Ca2+–selective ICRAC and moderately Ca2+–selective ISOC, support store-operated Ca2+ entry process. In previous patch-clamp experiments with a human carcinoma A431 cell line we described store-operated Imin/ICRACL plasma membrane Ca2+ influx channels. In the present paper we use whole-cell and single-channel recordings to further characterize store-operated Ca2+ influx pathways in A431 cells. We discovered that (a) ICRAC and ISOC are present in A431 cells; (b) ICRAC currents are highly selective for divalent cations and fully activate within 150 s after initiation of Ca2+ store depletion; (c) ISOC currents are moderately selective for divalent cations (PBa/PCs = 14.5) and require at least 300 s for full activation; (d) ICRAC and ISOC currents are activated by PLC-coupled receptor agonists; (e) ISOC currents are supported by Imin/ICRACL channels that display 8.5–10 pS conductance for sodium; (f) ICRAC single channel conductance for sodium is estimated at 0.9 pS by the noise analysis; (g) Imin/ICRACL channels are activated in excised patches by an amino-terminal fragment of InsP3R1 (InsP3R1N); and (h) InsP3 binding to InsP3R1N is necessary for activation of Imin/ICRACL channels. Our findings provide novel information about store-operated Ca2+ influx pathways in A431 cells.
The Journal of Physiology | 1995
Alexander P. Naumov; Elena Kaznacheyeva; K I Kiselyov; Yuri A. Kuryshev; A G Mamin; Galina N. Mozhayeva
1. To study mechanisms of receptor‐operated Ca2+ influx in non‐excitable cells, membrane currents of rat peritoneal macrophages were recorded using whole‐cell cell‐attached and outside‐out configurations of the patch clamp technique. Under whole‐cell recording conditions, ATP applied in micromolar concentrations elicited an inward current response when the bath solution contained Ba2+, Ca2+ or Na+ as the only permeant cations. 2. Increasing the Mg2+ concentration had an inhibitory effect on the ATP‐induced inward current indicating that the active form of ATP responsible for the cation entry is ATP4‐. The nucleotide potency order was ATP > ATP gamma S > ADP. UTP was completely ineffective (n = 19). The data obtained are consistent with the ATP receptor being of the P2Z type. 3. The macrophage plasma membrane was impermeable to Tris+ during the ATP‐induced current at ATP4‐ concentrations varying from 0.07 to 500 microM. At higher concentrations, ATP produced a large inward steady‐state current, which could be attributed to membrane permeabilization. 4. Activity of single channels was recorded when ATP was applied to the external surface of the patch membrane both in cell‐attached and outside‐out experiments. A specific property of the channels appeared to be the existence of at least four conductance sublevels. With 105 mM Ba2+ as the permeant cation, the conductance sublevels were 3.5, 7, 10 and 15 pS. With 10 mM Ca2+ the sublevel conductances were equal to 4, 9, 13 and 17 pS. 5. The unitary conductance estimated from the whole‐cell current noise analysis (3.5‐4.5 pS for 105 mM Ba2+) was significantly lower than that obtained from single channel measurements at the main (3rd) current level, but it was very close to the conductance of the minimum (1st) level. 6. Extrapolated reversal potential values estimated from current‐voltage curves for predominant conductance levels were equal to +40 and +26 mV for 105 mM Ba2+ and 10 mM Ca2+, respectively. The permeability ratios fell in the sequence: PCa:PBa:PK = 71.:29:1. Thus, ATP‐activated channels in the macrophage membrane are rather selective for divalent vs. monovalent cations, with the predominant permeability being for Ca2+.
FEBS Letters | 2013
Boris A. Margulis; Vladimir Vigont; Vladimir F. Lazarev; Elena Kaznacheyeva; Irina V. Guzhova
Polyglutamine diseases are a group of pathologies affecting different parts of the brain and causing dysfunction and atrophy of certain neural cell populations. These diseases stem from mutations in various cellular genes that result in the synthesis of proteins with extended polyglutamine tracts. In particular, this concerns huntingtin, ataxins, and androgen receptor. These mutant proteins can form oligomers, aggregates, and, finally, aggresomes with distinct functions and different degrees of cytotoxicity. In this review, we analyze the effects of different forms of polyQ proteins on other proteins and their functions, which are considered as targets for therapeutic intervention.
Journal of Biological Chemistry | 2007
Elena Kaznacheyeva; Lyuba Glushankova; Vladislav Bugaj; O. A. Zimina; Anton Skopin; Vadim Alexeenko; Leonidas Tsiokas; Ilya Bezprozvanny; Galina N. Mozhayeva
In most non-excitable cells, calcium (Ca2+) release from the inositol 1,4,5-trisphosphate (InsP3)-sensitive intracellular Ca2+ stores is coupled to Ca2+ influx through the plasma membrane Ca2+ channels whose molecular composition is poorly understood. Several members of mammalian TRP-related protein family have been implicated to both receptor- and store-operated Ca2+ influx. Here we investigated the role of the native transient receptor potential 3 (TRPC3) homologue in mediating the store- and receptor-operated calcium entry in A431 cells. We show that suppression of TRPC3 protein levels by small interfering RNA (siRNA) leads to a significant reduction in store-operated calcium influx without affecting the receptor-operated calcium influx. With single-channel analysis, we further demonstrate that reduction of TRPC3 levels results in suppression of specific subtype of store-operated calcium channels and activation of store-independent channels. Our data suggest that TRPC3 is required for the formation of functional store-operated channels in A431 cells.
Biochimie | 2013
Maria Ryazantseva; Ksenia Skobeleva; Elena Kaznacheyeva
Alzheimers disease (AD) is a neurodegenerative disorder that leads to neuron death and synapse loss in the hippocampus and cortex, with consequent cognitive disability and dementia. Mutations in the presenilin-1 (PS1) gene lead to familial Alzheimers disease (FAD). Here, we report that the expression of FAD-linked PS1 M146V mutant affects store-operated calcium channel activity (Isoc) in human neuroblastoma SK-N-SH cells. Electrophysiological measurements and calcium imaging experiments have revealed the emergent role of calcium sensor STIM2 in the inhibition of calcium release-activated calcium channel activity (Icrac) and enhancement of intracellular Ca(2+) stores content due to PS1 M146V mutant expression. In general, the results of this study suggest that the pathological inhibition of one type of store-operated calcium channels caused by FAD PS1 mutant expression may be accounted for by preceding gain of spontaneous activity of store-operated calcium channels driven by STIM2.
Journal of Biological Chemistry | 2015
Alexey Shalygin; Anton Skopin; Vera Kalinina; O. A. Zimina; Lyuba Glushankova; Galina N. Mozhayeva; Elena Kaznacheyeva
Background: STIM calcium sensors are key modulators of store-operated channels (SOCs). Results: Changes in the ratio of active STIM2/STIM1 switch Imin channel regulation between store-operated and store-independent modes. Conclusion: Endogenous SOCs are differently regulated by STIM1 and STIM2. Significance: Cross-talk between STIM1 and STIM2 and their different roles in channel activation are indicative of an additional level of SOC regulation. The endoplasmic reticulum calcium sensors stromal interaction molecules 1 and 2 (STIM1 and STIM2) are key modulators of store-operated calcium entry. Both these sensors play a major role in physiological functions in normal tissue and in pathology, but available data on native STIM2-regulated plasma membrane channels are scarce. Only a few studies have recorded STIM2-induced CRAC (calcium release-activated calcium) currents. On the other hand, many cell types display store-operated currents different from CRAC. The STIM1 protein regulates not only CRAC but also transient receptor potential canonical (TRPC) channels, but it has remained unclear whether STIM2 is capable of regulating store-operated non-CRAC channels. Here we present for the first time experimental evidence for the existence of endogenous non-CRAC STIM2-regulated channels. As shown in single-channel patch clamp experiments on HEK293 cells, selective activation of native STIM2 proteins or STIM2 overexpression results in store-operated activation of Imin channels, whereas STIM1 activation blocks this process. Changes in the ratio between active STIM2 and STIM1 proteins can switch the regulation of Imin channels between store-operated and store-independent modes. We have previously characterized electrophysiological properties of different Ca2+ influx channels coexisting in HEK293 cells. The results of this study show that STIM1 and STIM2 differ in the ability to activate these store-operated channels; Imin channels are regulated by STIM2, TRPC3-containing INS channels are induced by STIM1, and TRPC1-composed Imax channels are activated by both STIM1 and STIM2. These new data about cross-talk between STIM1 and STIM2 and their different roles in store-operated channel activation are indicative of an additional level in the regulation of store-operated calcium entry pathways.