Elena L. Vodovozova
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elena L. Vodovozova.
European Journal of Cancer | 2000
Elena L. Vodovozova; E.V. Moiseeva; G.K. Grechko; G.P. Gayenko; N.E. Nifant'ev; N. V. Bovin; Julian G. Molotkovsky
The overexpression of lectins by malignant cells compared with normal ones can be used for the targeting of drug-loaded liposomes to tumours with the help of specific carbohydrate ligands (vectors). Recently we have shown that liposomes bearing specific lipid-anchored glycoconjugates on a polymeric matrix bind in vitro to human malignant cells more effectively and, being loaded with a lipophilic prodrug of merphalan, reveal higher cytotoxic activity compared with unvectored liposomes. In this study, carbohydrate-equipped cytotoxic liposomes were tested in vivo in a mouse breast cancer model, BLRB-Rb (8.17)1Iem strain with a high incidence of spontaneous mammary adenocarcinoma (SMA). Firstly, a cell line of the SMA was established which was then used to determine the specificity of the tumour cell lectins. After screening of the lectin specificity of a number of fluorescent carbohydrate probes, SiaLe(X) was shown to be the ligand with the most affinity, and a lipophilic vector bearing this saccharide was synthesised. Then different liposomal formulations of the synthetic merphalan lipid derivative and SiaLe(X) vector were prepared and applied in the treatment of mice with grafted adenocarcinomas. The results of the tumorigenesis data show that the therapeutic efficacy of merphalan increases sharply after its insertion as a lipophilic prodrug into the membrane of SiaLe(X)-vectored liposomes.
Colloids and Surfaces B: Biointerfaces | 2015
S.V. German; N.A. Navolokin; N.R. Kuznetsova; V.V. Zuev; Olga A. Inozemtseva; A. A. Anis’kov; E.K. Volkova; A.B. Bucharskaya; G.N. Maslyakova; Rawil F. Fakhrullin; G.S. Terentyuk; Elena L. Vodovozova; Dmitry A. Gorin
Magnetic fluid-loaded liposomes (MFLs) were fabricated using magnetite nanoparticles (MNPs) and natural phospholipids via the thin film hydration method followed by extrusion. The size distribution and composition of MFLs were studied using dynamic light scattering and spectrophotometry. The effective ranges of magnetite concentration in MNPs hydrosol and MFLs for contrasting at both T2 and T1 relaxation were determined. On T2 weighted images, the MFLs effectively increased the contrast if compared with MNPs hydrosol, while on T1 weighted images, MNPs hydrosol contrasting was more efficient than that of MFLs. In vivo magnetic resonance imaging (MRI) contrasting properties of MFLs and their effects on tumor and normal tissues morphology, were investigated in rats with transplanted renal cell carcinoma upon intratumoral administration of MFLs. No significant morphological changes in rat internal organs upon intratumoral injection of MFLs were detected, suggesting that the liposomes are relatively safe and can be used as the potential contrasting agents for MRI.
Biochimica et Biophysica Acta | 1987
Alla G. Bukrinskaya; Julian G. Molotkovsky; Elena L. Vodovozova; Yefim Manevich; Bergel'son Ld
The membrane structures of remantadin-sensitive and remantadin-resistant influenza virus strains were studied using a photoreactive fatty acid as well as analogues of phosphatidylcholine, phosphatidylethanolamine and sphingomyelin, carrying a fluorescent or photoreactive reporter group at the end of one of the aliphatic chains. The results obtained demonstrated for the first time that the phospholipids of the viral membrane form lateral domains differing by the fluidity of their hydrocarbon chains and, probably, by the head-group composition of the lipids. The hemagglutinin small subunit (HA2) was shown to protrude into the apolar region of the phospholipid bilayer, whereas the M1 protein makes contact only with the inner surface. In the remantadin-sensitive virions the heavy hemagglutinin chain (HA1) appears not to be in contact with the lipid bilayer, whereas in the remantadin-resistant strain HA1 has a hydrophobic segment that proved to be inserted into the bilayer.
Russian Journal of Bioorganic Chemistry | 2013
N Kuznetsova; E. V. Svirshchevskaya; Nikolay S. Sitnikov; L. Abodo; H. Sutorius; J. Zapke; Janna Velder; P. Thomopoulou; H. Oschkinat; Aram Prokop; H. G. Schmalz; A. Yu. Fedorov; Elena L. Vodovozova
Colchicine site binders—blockers of tubulin polymerization—are potential antimitotic agents for anticancer therapy. To reduce their systemic toxicity and improve biodistribution, encapsulation in nanosized liposomes may be employed. Liposomes present a convenient means for preparation of injectable for-mulations of hydrophobic compounds, however colchicine as such is known to leak through the lipid bilayer. In this study, newly synthesized triazole-containing analogues of colchicine and allocolchicine, and their palmitic and oleic esters (lipophilic prodrugs) were tested for anti-proliferative activity and apoptosis-inducing potential. In contrast to colchicine conjugates, whose activities ranged with those of colchicine, allocolchicine derivatives exhibited drastically lower effects and were discarded. Liposomes of about 100 nm in diameter composed of egg phosphatidylcholine-yeast phosphatidylinositol-palmitic or oleic prodrug, 8: 1: 1, by mol, were prepared by standard extrusion technique and tested in a panel of four human tumor cell lines. Liposome formulations preserved the biological activities of the parent colchicinoid the most towards human epithelial tumor cells. Moreover, liposomal form of the oleoyl bearing colchicinoid inhibited cell proliferation more efficiently than free lipophilic prodrug. Due to substantial loading capacity of the liposomes, the dispersions contain sufficient concentration of the active agent to test wide dose range in experiments on systemic administration to animals.
Biochimica et Biophysica Acta | 1988
Efim M. Manevich; Martynova Ma; Muzya Gi; Elena L. Vodovozova; Julian G. Molotkovsky; Bergel'son Ld
The interaction of human serum low-density lipoproteins (LDL) with various types of prostaglandins (PG) was studied using equilibrium dialysis, steady-state fluorescence polarization spectroscopy and photolabeling methods. Low concentrations (10(-13)-10(-9) M) of PGE1 and PGF2 alpha were shown to induce specific rearrangements of the lipids on the LDL surface, whereas the closely related PGE2 and PGF1 alpha had no effect. With fluorescent labeled LDL, the PGE1-induced changes of the steady-state fluorescence polarization (P) were shown to be time- and concentration-dependent, saturable and reversible. However, equilibrium dialysis revealed a very low binding capacity of LDL for PGE1 (approx. 1 prostaglandin molecule per 600 LDL particles). Approximately the same PGE1 concentration was sufficient to cause maximal changes of P, to enhance the binding to apolipoprotein B of a photoreactive sphingomyelin analogue inserted into the LDL surface and to alter the thermal phase behavior of the LDL surface lipids. It is proposed that the LDL surface rearrangement caused by prostaglandins is due to the interaction of prostaglandins with apolipoprotein B, resulting in formation of short-lived complexes. The mechanism of this interaction is discussed in terms of the non-equilibrium ligand-receptor interaction model proposed earlier to explain the interaction of prostaglandins with high-density lipoproteins (Bergelson, L.D. et al. (1987) Biochim. Biophys. Acta 921, 182-190). It is suggested that direct prostaglandin-lipoprotein interactions may play a role in the homeostasis of cholesterol.
Iubmb Life | 1998
Elena L. Vodovozova; Galina P. Gayenko; Vladimir I. Razinkov; Elena Korchagina; N. V. Bovin; Julian G. Molotkovsky
The overexpression of lectins by malignant cells was applied for in vitro targeting of liposomes equipped with a saccharide vector and loaded in the lipid phase with a lipid derivative of anticancer agent sarcotysine. The lectin specificity of human leukemia HL‐60 and human lung adenocarcinoma ACL cells was revealed by tests with fluorescein‐labeled sugar probes. With the help of fluorescent lipid dye it was shown that active saccharide ligands increased the level of the vectored liposome binding to malignant cells by 50‐80% as compared to liposomes without vector or with inactive one. The degree of liposome/cell membrane fusion was monitored fluorometrically and was shown to be complete and independent of the vectors. The targeted drug‐loaded liposomes had the cytotoxic activity 2‐4 times higher as compared to the vector‐free ones.
Journal of Drug Targeting | 2014
N Kuznetsova; Eugenia Stepanova; Nina Peretolchina; Dmitry Khochenkov; Ivan A. Boldyrev; Nicolai V. Bovin; Elena L. Vodovozova
Abstract Earlier we showed that liposome formulation of DL-melphalan lipophilic prodrug bearing tetrasaccharide Sialyl Lewis X (SiaLeX) caused prolonged therapeutic effect on mammary cancer in mice. Here, we compare antivascular effect of SiaLeX-liposomes loaded with diglyceride ester of melphalan (Mlph) against SiaLeX-free formulation in Lewis lung carcinoma model. Methods: Liposomes of egg phosphatidylcholine/yeast phosphatidylinositol/1,2-dioleoyl glycerol (DOG) conjugate of Mlph/±SiaLeX-PEG8–15-DOG, 8:1:1:0.2 by mol, were prepared by standard extrusion. After two intravenous injections with Mlph or liposomes under either standard or delayed treatment protocols, vascular-disrupting effects of the preparations were evaluated basing on tumour section histomorphology, lectin perfusion assay and immunohistochemistry (anti-CD31 staining) data. Also, untreated mice were administered with fluorescently-labelled liposomes to assess their distribution in tumour sections with confocal laser scanning microscopy. Results: Two injections of SiaLeX-liposomes reproducibly caused severe injuries of tumour vessels. SiaLeX-liposomes co-localized with CD31 marker on vascular endothelium while the non-targeted formulation extravasated into tumour. Discussion: Cytotoxic SiaLeX-liposomes exhibit superior vascular-disrupting properties compared to non-targeted liposomes, yet the effect starts to transform into gain in tumour growth inhibition only under delayed treatment regimen. Conclusion: SiaLeX-ligand provides targeting of cytotoxic liposomes to tumour endothelium and subsequent antivascular effect.
Tetrahedron Letters | 1994
Elena L. Vodovozova; Julian G. Molotkovsky
Abstract A new route for acylation of lysophosphatidylcholine (lysoPC) by condensation it with fatty acid/dicyclohexylcarbodiimide (DCC) under catalysis of 4-hydroxypyridine (4PyOH) is described; as suggested O-acylation proceeds via formation of the activated 4PyOH-ester. This one-pot method does not need fatty acid excess, it is especially suitable for the small-scale syntheses of phosphatidylcholines (PC) with precious or labile (e.g. photoaffine) fatty acid residues.
Biochimica et Biophysica Acta | 2015
Anna V. Alekseeva; Marina Kapkaeva; Olga Shcheglovitova; Ivan A. Boldyrev; Galina V. Pazynina; Nicolai V. Bovin; Elena L. Vodovozova
Recently, we showed that tetrasaccharide selectin ligand SiaLeX provided targeted delivery of liposomes loaded in the bilayer with melphalan lipophilic prodrug to tumour endothelium followed by severe injury of tumour vessels in a Lewis lung carcinoma model. Here, we study the impact of SiaLeX ligand on the interactions of liposomes with human umbilical vein endothelial cells (HUVEC) using flow cytometry, spectrofluorimetry and confocal microscopy. Liposomes composed of egg phosphatidylcholine/yeast phosphatidylinositol/1,2-dioleoyl glycerol ester of melphalan, 8:1:1, by mol, and varying percentages of lipophilic SiaLeX conjugate were labelled with BODIPY-phosphatidylcholine. The increase in SiaLeX content in liposomes led to a proportional increase in their uptake by cytokine-activated cells as opposed to non-activated HUVEC: for 10% SiaLeX liposomes, binding avidity and overall accumulation increased 14- and 6-fold, respectively. The early stages of intracellular traffic of targeted liposomes in the activated cells were monitored by co-localisation with the trackers of organelles. Endocytosis of SiaLeX liposomes occurred mostly via clathrin-independent pathways, which does not contradict the available literature data on E-selectin localisation in the plasma membrane. Using dual fluorescence labelling, with rhodamine-labelled phospholipid and calcein encapsulated at self-quenching concentrations, we found that SiaLeX liposomes undergo rapid (within minutes) internalisation by activated HUVEC accompanied by the disruption of liposomes; non-activated cells consumed a negligible dose of liposomes during at least 1.5h. Our data evidence the selective effect of SiaLeX formulations on activated endothelial cells and indicate their potential for intracellular delivery of melphalan lipophilic prodrug.
International Journal of Nanomedicine | 2017
Anna A Alekseeva; Ekaterina V Moiseeva; Natalia R Onishchenko; Ivan A. Boldyrev; Alexander S Singin; Andrey P Budko; Zoya S Shprakh; Julian G. Molotkovsky; Elena L. Vodovozova
In a previous study, a formulation of methotrexate (MTX) incorporated in the lipid bilayer of 100-nm liposomes in the form of diglyceride ester (MTX-DG, lipophilic prodrug) was developed. In this study, first, the interactions of MTX-DG liposomes with various human and mouse tumor cell lines were studied using fluorescence techniques. The liposomes composed of egg phosphatidylcholine (PC)/yeast phosphatidylinositol/MTX-DG, 8:1:1 by mol, were labeled with fluorescent analogs of PC and MTX-DG. Carcinoma cells accumulated 5 times more MTX-DG liposomes than the empty liposomes. Studies on inhibitors of liposome uptake and processing by cells demonstrated that the formulation used multiple mechanisms to deliver the prodrug inside the cell. According to the data from the present study, undamaged liposomes fuse with the cell membrane only 1.5–2 hours after binding to the cell surface, and then, the components of liposomal bilayer enter the cell separately. The study on the time course of plasma concentration in mice showed that the area under the curve of MTX generated upon intravenous injection of MTX-DG liposomes exceeded that of intact MTX 2.5-fold. These data suggested the advantage of using liposomal formulation to treat systemic manifestation of hematological malignancies. Indeed, the administration of MTX-DG liposomes to recipient mice bearing T-cell leukemic lymphoma using a dose-sparing regimen resulted in lower toxicity and retarded lymphoma growth rate as compared with MTX.