Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elena N. Atochina-Vasserman is active.

Publication


Featured researches published by Elena N. Atochina-Vasserman.


PLOS Biology | 2008

S-nitrosylation of surfactant protein-D controls inflammatory function.

Chang-Jiang Guo; Elena N. Atochina-Vasserman; Elena Abramova; Joseph P. Foley; Aisha Zaman; Erika C. Crouch; Michael F. Beers; Rashmin C. Savani; Andrew J. Gow

The pulmonary collectins, surfactant proteins A and D (SP-A and SP-D) have been implicated in the regulation of the innate immune system within the lung. In particular, SP-D appears to have both pro- and anti-inflammatory signaling functions. At present, the molecular mechanisms involved in switching between these functions remain unclear. SP-D differs in its quaternary structure from SP-A and the other members of the collectin family, such as C1q, in that it forms large multimers held together by the N-terminal domain, rather than aligning the triple helix domains in the traditional “bunch of flowers” arrangement. There are two cysteine residues within the hydrophobic N terminus of SP-D that are critical for multimer assembly and have been proposed to be involved in stabilizing disulfide bonds. Here we show that these cysteines exist within the reduced state in dodecameric SP-D and form a specific target for S-nitrosylation both in vitro and by endogenous, pulmonary derived nitric oxide (NO) within a rodent acute lung injury model. S-nitrosylation is becoming increasingly recognized as an important post-translational modification with signaling consequences. The formation of S-nitrosothiol (SNO)-SP-D both in vivo and in vitro results in a disruption of SP-D multimers such that trimers become evident. SNO-SP-D but not SP-D, either dodecameric or trimeric, is chemoattractive for macrophages and induces p38 MAPK phosphorylation. The signaling capacity of SNO-SP-D appears to be mediated by binding to calreticulin/CD91. We propose that NO controls the dichotomous nature of this pulmonary collectin and that posttranslational modification by S-nitrosylation causes quaternary structural alterations in SP-D, causing it to switch its inflammatory signaling role. This represents new insight into both the regulation of protein function by S-nitrosylation and NOs role in innate immunity.


American Journal of Respiratory and Critical Care Medicine | 2011

ANGPT2 Genetic Variant Is Associated with Trauma-associated Acute Lung Injury and Altered Plasma Angiopoietin-2 Isoform Ratio

Nuala J. Meyer; Mingyao Li; Rui Feng; Jonathan P. Bradfield; Robert Gallop; Scarlett L. Bellamy; Barry D. Fuchs; Paul N. Lanken; Steven M. Albelda; Melanie Rushefski; Richard Aplenc; Helen Abramova; Elena N. Atochina-Vasserman; Michael F. Beers; Carolyn S. Calfee; Mitchell J. Cohen; Jean Francois Pittet; David C. Christiani; Grant E. O'Keefe; Lorraine B. Ware; Addison K. May; Mark M. Wurfel; Hakon Hakonarson; Jason D. Christie

RATIONALE Acute lung injury (ALI) acts as a complex genetic trait, yet its genetic risk factors remain incompletely understood. Large-scale genotyping has not previously been reported for ALI. OBJECTIVES To identify ALI risk variants after major trauma using a large-scale candidate gene approach. METHODS We performed a two-stage genetic association study. We derived findings in an African American cohort (n = 222) using a cardiopulmonary disease-centric 50K single nucleotide polymorphism (SNP) array. Genotype and haplotype distributions were compared between subjects with ALI and without ALI, with adjustment for clinical factors. Top performing SNPs (P < 10(-4)) were tested in a multicenter European American trauma-associated ALI case-control population (n = 600 ALI; n = 2,266 population-based control subjects) for replication. The ALI-associated genomic region was sequenced, analyzed for in silico prediction of function, and plasma was assayed by ELISA and immunoblot. MEASUREMENTS AND MAIN RESULTS Five SNPs demonstrated a significant association with ALI after adjustment for covariates in Stage I. Two SNPs in ANGPT2 (rs1868554 and rs2442598) replicated their significant association with ALI in Stage II. rs1868554 was robust to multiple comparison correction: odds ratio 1.22 (1.06-1.40), P = 0.0047. Resequencing identified predicted novel splice sites in linkage disequilibrium with rs1868554, and immunoblots showed higher proportion of variant angiopoietin-2 (ANG2) isoform associated with rs1868554T (0.81 vs. 0.48; P = 0.038). CONCLUSIONS An ANGPT2 region is associated with both ALI and variation in plasma angiopoietin-2 isoforms. Characterization of the variant isoform and its genetic regulation may yield important insights about ALI pathogenesis and susceptibility.


Respiratory Research | 2011

Comprehensive characterisation of pulmonary and serum surfactant protein D in COPD

Carla Winkler; Elena N. Atochina-Vasserman; Olaf Holz; Michael F. Beers; Veit J. Erpenbeck; Norbert Krug; Stefan Roepcke; Gereon Lauer; Martin W. Elmlinger; Jens M. Hohlfeld

BackgroundPulmonary surfactant protein D (SP-D) is considered as a candidate biomarker for the functional integrity of the lung and for disease progression, which can be detected in serum. The origin of SP-D in serum and how serum concentrations are related to pulmonary concentrations under inflammatory conditions is still unclear.MethodsIn a cross-sectional study comprising non-smokers (n = 10), young - (n = 10), elderly smokers (n = 20), and smokers with COPD (n = 20) we simultaneously analysed pulmonary and serum SP-D levels with regard to pulmonary function, exercise, repeatability and its quaternary structure by native gel electrophoresis. Statistical comparisons were conducted by ANOVA and post-hoc testing for multiple comparisons; repeatability was assessed by Bland-Altman analysis.ResultsIn COPD, median (IQR) pulmonary SP-D levels were lower (129(68) ng/ml) compared to smokers (young: 299(190), elderly: 296(158) ng/ml; p < 0.01) and non-smokers (967(708) ng/ml; p < 0.001). The opposite was observed in serum, with higher concentrations in COPD (140(89) ng/ml) as compared to non-smokers (76(47) ng/ml; p < 0.01). SP-D levels were reproducible and correlated with the degree of airway obstruction in all smokers. In addition, smoking lead to disruption of the quaternary structure.ConclusionsPulmonary and serum SP-D levels are stable markers influenced by smoking and related to airflow obstruction and disease state. Smaller subunits of pulmonary SP-D and the rapid increase of serum SP-D levels in COPD due to exercise support the translocation hypothesis and its use as a COPD biomarker.Trial registrationno interventional trial


Journal of Immunology | 2006

IL-4 and IL-13 Form a Negative Feedback Circuit with Surfactant Protein-D in the Allergic Airway Response

Angela Haczku; Yang Cao; Geza Vass; S. Kierstein; Puneeta Nath; Elena N. Atochina-Vasserman; Seth T. Scanlon; Lily Li; Don E. Griswold; K. Fan Chung; Francis R. Poulain; Samuel Hawgood; Michael F. Beers; Erika C. Crouch

The innate immune molecule surfactant protein-D (SP-D) plays an important regulatory role in the allergic airway response. In this study, we demonstrate that mice sensitized and challenged with either Aspergillus fumigatus (Af) or OVA have increased SP-D levels in their lung. SP-D mRNA and protein levels in the lung also increased in response to either rIL-4 or rIL-13 treatment. Type II alveolar epithelial cell expression of IL-4Rs in mice sensitized and challenged with Af, and in vitro induction of SP-D mRNA and protein by IL-4 and IL-13, but not IFN-γ, suggested a direct role of IL-4R-mediated events. The regulatory function of IL-4 and IL-13 was further supported in STAT-6-deficient mice as well as in IL-4/IL-13 double knockout mice that failed to increase SP-D production upon allergen challenge. Interestingly, addition of rSP-D significantly inhibited Af-driven Th2 cell activation in vitro whereas mice lacking SP-D had increased numbers of CD4+ cells with elevated IL-13 and thymus- and activation-regulated chemokine levels in the lung and showed exaggerated production of IgE and IgG1 following allergic sensitization. We propose that allergen exposure induces elevation in SP-D protein levels in an IL-4/IL-13-dependent manner, which in turn, prevents further activation of sensitized T cells. This negative feedback regulatory circuit could be essential in protecting the airways from inflammatory damage after allergen inhalation.


Development | 2007

GATA and Nkx factors synergistically regulate tissue-specific gene expression and development in vivo

Yuzhen Zhang; Nibedita Rath; Sridhar Hannenhalli; Zhishan Wang; Thomas P. Cappola; Shioko Kimura; Elena N. Atochina-Vasserman; Min Min Lu; Michael F. Beers; Edward E. Morrisey

In vitro studies have suggested that members of the GATA and Nkx transcription factor families physically interact, and synergistically activate pulmonary epithelial- and cardiac-gene promoters. However, the relevance of this synergy has not been demonstrated in vivo. We show that Gata6-Titf1 (Gata6-Nkx2.1) double heterozygous (G6-Nkx DH) embryos and mice have severe defects in pulmonary epithelial differentiation and distal airway development, as well as reduced phospholipid production. The defects in G6-Nkx DH embryos and mice are similar to those observed in human neonates with respiratory distress syndromes, including bronchopulmonary dysplasia, and differential gene expression analysis reveals essential developmental pathways requiring synergistic regulation by both Gata6 and Titf1 (Nkx2.1). These studies indicate that Gata6 and Nkx2.1 act in a synergistic manner to direct pulmonary epithelial differentiation and development in vivo, providing direct evidence that interactions between these two transcription factor families are crucial for the development of the tissues in which they are co-expressed.


American Journal of Respiratory and Critical Care Medicine | 2008

Surfactant Protein D Protects against Acute Hyperoxic Lung Injury

Deepika Jain; Elena N. Atochina-Vasserman; Yaniv Tomer; Helchem Kadire; Michael F. Beers

RATIONALE Surfactant protein D (SP-D) is a member of the collectin family of soluble, innate, host defense molecules with demonstrated immunomodulatory properties in vitro. Constitutive absence of SP-D in mice is associated with lung inflammation, alteration in surfactant lipid homeostasis, and increased oxidative-nitrative stress. OBJECTIVES To test the hypothesis that SP-D would protect against acute lung injury from hyperoxia in vivo. METHODS Transgenic mice overexpressing rat SP-D constitutively (SP-D OE) or conditionally via regulation with doxycycline (SP-D Dox-on) were subjected to continuous hyperoxic challenge for up to 14 days. MEASUREMENTS AND MAIN RESULTS Compared with littermate control mice (wild-type [WT]), SP-D OE mice exposed to 80% O(2) demonstrated substantially increased survival accompanied by significant reductions in wet to dry lung ratios and bronchoalveolar lavage (BAL) protein. Although SP-D OE and WT mice exhibited a twofold increase in total BAL cells and neutrophilia in response to hyperoxia, the SP-D OE group had lower levels of BAL proinflammatory cytokines and chemokines, including IL-6, tumor necrosis factor-alpha, and monocyte chemotactic protein-1; increased mRNA levels of the transcription factor NF-E2 related factor-2 (NRF-2) and phase 2 antioxidants hemoxygenase-1 (HO-1), glutathione peroxidase-2 (GPx-2) and NAD(P)H quinone oxidoreductase-1 (Nqo-1); and decreases in lung tissue thiobarbituric acid-reactive substances. As proof of principle, the protective role of SP-D on hyperoxic injury was confirmed as SP-D Dox-on mice exposed to 85% O(2) demonstrated increased mortality upon withdrawal of doxycycline. CONCLUSIONS Local expression of SP-D protects against hyperoxic lung injury through modulation of proinflammatory cytokines and antioxidant enzymatic scavenger systems.


Cell Reports | 2014

Folliculin Controls Lung Alveolar Enlargement and Epithelial Cell Survival through E-cadherin, LKB1 and AMPK

Elena A. Goncharova; Dmitry A. Goncharov; Melane L. James; Elena N. Atochina-Vasserman; Victoria Stepanova; Seung-Beom Hong; Hua Li; Linda W. Gonzales; Masaya Baba; W. Marston Linehan; Andrew J. Gow; Susan S. Margulies; Susan H. Guttentag; Laura S. Schmidt; Vera P. Krymskaya

Spontaneous pneumothoraces due to lung cyst rupture afflict patients with the rare disease Birt-Hogg-Dubé (BHD) syndrome, which is caused by mutations of the tumor suppressor gene folliculin (FLCN). The underlying mechanism of the lung manifestations in BHD is unclear. We show that BHD lungs exhibit increased alveolar epithelial cell apoptosis and that Flcn deletion in mouse lung epithelium leads to cell apoptosis, alveolar enlargement, and an impairment of both epithelial barrier and overall lung function. We find that Flcn-null epithelial cell apoptosis is the result of impaired AMPK activation and increased cleaved caspase-3. AMPK activator LKB1 and E-cadherin are downregulated by Flcn loss and restored by its expression. Correspondingly, Flcn-null cell survival is rescued by the AMPK activator AICAR or constitutively active AMPK. AICAR also improves lung condition of Flcn(f/f):SP-C-Cre mice. Our data suggest that lung cysts in BHD may result from an underlying defect in alveolar epithelial cell survival, attributable to FLCN regulation of the E-cadherin-LKB1-AMPK axis.


Journal of Immunology | 2009

Immune Reconstitution during Pneumocystis Lung Infection: Disruption of Surfactant Component Expression and Function by S-Nitrosylation

Elena N. Atochina-Vasserman; Andrew J. Gow; Helen Abramova; Chang-Jiang Guo; Yaniv Tomer; Angela M. Preston; James M. Beck; Michael F. Beers

Pneumocystis pneumonia (PCP), the most common opportunistic pulmonary infection associated with HIV infection, is marked by impaired gas exchange and significant hypoxemia. Immune reconstitution disease (IRD) represents a syndrome of paradoxical respiratory failure in patients with active or recently treated PCP subjected to immune reconstitution. To model IRD, C57BL/6 mice were selectively depleted of CD4+ T cells using mAb GK1.5. Following inoculation with Pneumocystis murina cysts, infection was allowed to progress for 2 wk, GK1.5 was withdrawn, and mice were followed for another 2 or 4 wk. Flow cytometry of spleen cells demonstrated recovery of CD4+ cells to >65% of nondepleted controls. Lung tissue and bronchoalveolar lavage fluid harvested from IRD mice were analyzed in tandem with samples from CD4-depleted mice that manifested progressive PCP for 6 wks. Despite significantly decreased pathogen burdens, IRD mice had persistent parenchymal lung inflammation, increased bronchoalveolar lavage fluid cellularity, markedly impaired surfactant biophysical function, and decreased amounts of surfactant phospholipid and surfactant protein (SP)-B. Paradoxically, IRD mice also had substantial increases in the lung collectin SP-D, including significant amounts of an S-nitrosylated form. By native PAGE, formation of S-nitrosylated SP-D in vivo resulted in disruption of SP-D multimers. Bronchoalveolar lavage fluid from IRD mice selectively enhanced macrophage chemotaxis in vitro, an effect that was blocked by ascorbate treatment. We conclude that while PCP impairs pulmonary function and produces abnormalities in surfactant components and biophysics, these responses are exacerbated by IRD. This worsening of pulmonary inflammation, in response to persistent Pneumocystis Ags, is mediated by recruitment of effector cells modulated by S-nitrosylated SP-D.


American Journal of Respiratory and Critical Care Medicine | 2011

Early Alveolar Epithelial Dysfunction Promotes Lung Inflammation in a Mouse Model of Hermansky-Pudlak Syndrome

Elena N. Atochina-Vasserman; Sandra R. Bates; Peggy Zhang; Helen Abramova; Zhenguo Zhang; Linda Gonzales; Jian-Qin Tao; Bernadette R. Gochuico; William A. Gahl; Chang-Jiang Guo; Andrew J. Gow; Michael F. Beers; Susan H. Guttentag

RATIONALE The pulmonary phenotype of Hermansky-Pudlak syndrome (HPS) in adults includes foamy alveolar type 2 cells, inflammation, and lung remodeling, but there is no information about ontogeny or early disease mediators. OBJECTIVES To establish the ontogeny of HPS lung disease in an animal model, examine disease mediators, and relate them to patients with HPS1. METHODS Mice with mutations in both HPS1/pale ear and HPS2/AP3B1/pearl (EPPE mice) were studied longitudinally. Total lung homogenate, lung tissue sections, and bronchoalveolar lavage (BAL) were examined for phospholipid, collagen, histology, cell counts, chemokines, surfactant protein D (SP-D), and S-nitrosylated SP-D. Isolated alveolar epithelial cells were examined for expression of inflammatory mediators, and chemotaxis assays were used to assess their importance. Pulmonary function test results and BAL from patients with HPS1 and normal volunteers were examined for clinical correlation. MEASUREMENTS AND MAIN RESULTS EPPE mice develop increased total lung phospholipid, followed by a macrophage-predominant pulmonary inflammation, and lung remodeling including fibrosis. BAL fluid from EPPE animals exhibited early accumulation of both SP-D and S-nitrosylated SP-D. BAL fluid from patients with HPS1 exhibited similar changes in SP-D that correlated inversely with pulmonary function. Alveolar epithelial cells demonstrated expression of both monocyte chemotactic protein (MCP)-1 and inducible nitric oxide synthase in juvenile EPPE mice. Last, BAL from EPPE mice and patients with HPS1 enhanced migration of RAW267.4 cells, which was attenuated by immunodepletion of SP-D and MCP-1. CONCLUSIONS Inflammation is initiated from the abnormal alveolar epithelial cells in HPS, and S-nitrosylated SP-D plays a significant role in amplifying pulmonary inflammation.


Journal of Immunology | 2007

Selective Inhibition of Inducible NO Synthase Activity In Vivo Reverses Inflammatory Abnormalities in Surfactant Protein D-Deficient Mice

Elena N. Atochina-Vasserman; Michael F. Beers; Helchem Kadire; Yaniv Tomer; Adam Inch; Pamela Scott; Chang J. Guo; Andrew J. Gow

Surfactant protein D (SP-D)-deficient (SP-D−/−) mice exhibit early development of emphysema. Previously we have shown that SP-D deficiency results in increased production and activity of inducible NO synthase (iNOS). In this study, we examined whether treatment with the iNOS inhibitor 1400W could inhibit the inflammatory phenotype. Mice were treated with 1400W systemically for 7 wk from 3 wk of age. Treatment reduced total lung NO synthase activity to 14.7 ± 6.1% of saline-treated 10-wk-old SP-D−/− littermates. Long-term administration of 1400W reduced lung inflammation and cellular infiltration; and significantly attenuated the increased levels of matrix metalloproteinases 2 and 9, chemokines (KC, TARC), and cytokines (IFN-γ) seen in bronchoalveolar lavage (BAL) of SP-D−/− mice. Abrogation of these levels was associated with decreasing BAL chemotactic activity for RAW cells. Two weeks of treatment with 1400W reduced total lung NO synthase (NOS) activity to 12.7 ± 6.3% of saline-treated SP-D−/− mice. Short-term iNOS inhibition resulted in attenuation of pulmonary inflammation within SP-D−/− mice as shown by decreases in total BAL cell count (63 ± 6% of SP-D−/− control), macrophage size (>25 μm) within the BAL (62 ± 10% of SP-D−/− control), and a percentage of BAL macrophages producing oxidants (76 ± 9% of SP-D−/− control). These studies showed that s.c. delivery of 1400W can be achieved in vivo and can attenuate the inflammatory processes within SP-D deficiency. Our results represent the first report linking defects in the innate immune system in the lung with alterations in NO homeostasis.

Collaboration


Dive into the Elena N. Atochina-Vasserman's collaboration.

Top Co-Authors

Avatar

Michael F. Beers

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Gow

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helen Abramova

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Vera P. Krymskaya

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Yaniv Tomer

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helchem Kadire

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Lars Knudsen

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge