Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elena Restelli is active.

Publication


Featured researches published by Elena Restelli.


Neuron | 2008

Mutant Prion Protein Expression Causes Motor and Memory Deficits and Abnormal Sleep Patterns in a Transgenic Mouse Model

Sara Dossena; Luca Imeri; Michela Mangieri; Anna Garofoli; Loris Ferrari; Assunta Senatore; Elena Restelli; Claudia Balducci; Fabio Fiordaliso; Monica Salio; Susanna Bianchi; Luana Fioriti; Michela Morbin; Alessandro Pincherle; Gabriella Marcon; Flavio Villani; Mirjana Carli; Fabrizio Tagliavini; Gianluigi Forloni; Roberto Chiesa

A familial form of Creutzfeldt-Jakob disease (CJD) is linked to the D178N/V129 prion protein (PrP) mutation. Tg(CJD) mice expressing the mouse homolog of this mutant PrP synthesize a misfolded form of the mutant protein, which is aggregated and protease resistant. These mice develop clinical and pathological features reminiscent of CJD, including motor dysfunction, memory impairment, cerebral PrP deposition, and gliosis. Tg(CJD) mice also display electroencephalographic abnormalities and severe alterations of sleep-wake patterns strikingly similar to those seen in a human patient carrying the D178N/V129 mutation. Neurons in these mice show swelling of the endoplasmic reticulum (ER) with intracellular retention of mutant PrP, suggesting that ER dysfunction could contribute to the pathology. These results establish a transgenic animal model of a genetic prion disease recapitulating cognitive, motor, and neurophysiological abnormalities of the human disorder. Tg(CJD) mice have the potential for giving greater insight into the spectrum of neuronal dysfunction in prion diseases.


Neuron | 2012

Mutant PrP Suppresses Glutamatergic Neurotransmission in Cerebellar Granule Neurons by Impairing Membrane Delivery of VGCC α2δ-1 Subunit

Assunta Senatore; Simona Colleoni; Claudia Verderio; Elena Restelli; Raffaella Morini; Steven B. Condliffe; Ilaria Bertani; Susanna Mantovani; Mara Canovi; Edoardo Micotti; Gianluigi Forloni; Annette C. Dolphin; Michela Matteoli; Marco Gobbi; Roberto Chiesa

Summary How mutant prion protein (PrP) leads to neurological dysfunction in genetic prion diseases is unknown. Tg(PG14) mice synthesize a misfolded mutant PrP which is partially retained in the neuronal endoplasmic reticulum (ER). As these mice age, they develop ataxia and massive degeneration of cerebellar granule neurons (CGNs). Here, we report that motor behavioral deficits in Tg(PG14) mice emerge before neurodegeneration and are associated with defective glutamate exocytosis from granule neurons due to impaired calcium dynamics. We found that mutant PrP interacts with the voltage-gated calcium channel α2δ-1 subunit, which promotes the anterograde trafficking of the channel. Owing to ER retention of mutant PrP, α2δ-1 accumulates intracellularly, impairing delivery of the channel complex to the cell surface. Thus, mutant PrP disrupts cerebellar glutamatergic neurotransmission by reducing the number of functional channels in CGNs. These results link intracellular PrP retention to synaptic dysfunction, indicating new modalities of neurotoxicity and potential therapeutic strategies.


PLOS Pathogens | 2015

Transgenic fatal familial insomnia mice indicate prion infectivity-independent mechanisms of pathogenesis and phenotypic expression of disease.

I. Bouybayoune; Susanna Mantovani; Federico Del Gallo; Ilaria Bertani; Elena Restelli; Liliana Comerio; Francesca Baracchi; Natalia Fernández-Borges; Michela Mangieri; Cinzia Bisighini; Galina V. Beznoussenko; Alessandra Paladini; Claudia Balducci; Edoardo Micotti; Gianluigi Forloni; Joaquín Castilla; Fabio Fiordaliso; Fabrizio Tagliavini; Luca Imeri; Roberto Chiesa

Fatal familial insomnia (FFI) and a genetic form of Creutzfeldt-Jakob disease (CJD178) are clinically different prion disorders linked to the D178N prion protein (PrP) mutation. The disease phenotype is determined by the 129 M/V polymorphism on the mutant allele, which is thought to influence D178N PrP misfolding, leading to the formation of distinctive prion strains with specific neurotoxic properties. However, the mechanism by which misfolded variants of mutant PrP cause different diseases is not known. We generated transgenic (Tg) mice expressing the mouse PrP homolog of the FFI mutation. These mice synthesize a misfolded form of mutant PrP in their brains and develop a neurological illness with severe sleep disruption, highly reminiscent of FFI and different from that of analogously generated Tg(CJD) mice modeling CJD178. No prion infectivity was detectable in Tg(FFI) and Tg(CJD) brains by bioassay or protein misfolding cyclic amplification, indicating that mutant PrP has disease-encoding properties that do not depend on its ability to propagate its misfolded conformation. Tg(FFI) and Tg(CJD) neurons have different patterns of intracellular PrP accumulation associated with distinct morphological abnormalities of the endoplasmic reticulum and Golgi, suggesting that mutation-specific alterations of secretory transport may contribute to the disease phenotype.


PLOS ONE | 2011

Expression of mutant or cytosolic PrP in transgenic mice and cells is not associated with endoplasmic reticulum stress or proteasome dysfunction

Elena Quaglio; Elena Restelli; Anna Garofoli; Sara Dossena; Ada De Luigi; Luigina Tagliavacca; Daniele Imperiale; Antonio Migheli; Mario Salmona; Roberto Sitia; Gianluigi Forloni; Roberto Chiesa

The cellular pathways activated by mutant prion protein (PrP) in genetic prion diseases, ultimately leading to neuronal dysfunction and degeneration, are not known. Several mutant PrPs misfold in the early secretory pathway and reside longer in the endoplasmic reticulum (ER) possibly stimulating ER stress-related pathogenic mechanisms. To investigate whether mutant PrP induced maladaptive responses, we checked key elements of the unfolded protein response (UPR) in transgenic mice, primary neurons and transfected cells expressing two different mutant PrPs. Because ER stress favors the formation of untranslocated PrP that might aggregate in the cytosol and impair proteasome function, we also measured the activity of the ubiquitin proteasome system (UPS). Molecular, biochemical and immunohistochemical analyses found no increase in the expression of UPR-regulated genes, such as Grp78/Bip, CHOP/GADD153, or ER stress-dependent splicing of the mRNA encoding the X-box-binding protein 1. No alterations in UPS activity were detected in mutant mouse brains and primary neurons using the UbG76V-GFP reporter and a new fluorogenic peptide for monitoring proteasomal proteolytic activity in vivo. Finally, there was no loss of proteasome function in neurons in which endogenous PrP was forced to accumulate in the cytosol by inhibiting cotranslational translocation. These results indicate that neither ER stress, nor perturbation of proteasome activity plays a major pathogenic role in prion diseases.


Biochemical Journal | 2010

The hydrophobic core region governs mutant prion protein aggregation and intracellular retention.

Emiliano Biasini; Elena Restelli; Manuela Pozzoli; Tania Massignan; Roberto Chiesa

Approx. 15% of human prion diseases have a pattern of autosomal dominant inheritance, and are linked to mutations in the gene encoding PrP (prion protein), a GPI (glycosylphosphatidylinositol)-anchored protein whose function is not clear. The cellular mechanisms by which PrP mutations cause disease are also not known. Soon after synthesis in the ER (endoplasmic reticulum), several mutant PrPs misfold and become resistant to phospholipase cleavage of their GPI anchor. The biosynthetic maturation of the misfolded molecules in the ER is delayed and, during transit in the secretory pathway, they form detergent-insoluble and protease-resistant aggregates, suggesting that intracellular PrP aggregation may play a pathogenic role. We have investigated the consequence of deleting residues 114-121 within the hydrophobic core of PrP on the aggregation and cellular localization of two pathogenic mutants that accumulate in the ER and Golgi apparatus. Compared with their full-length counterparts, the deleted molecules formed smaller protease-sensitive aggregates and were more efficiently transported to the cell surface and released by phospholipase cleavage. These results indicate that mutant PrP aggregation and intracellular retention are closely related and depend critically on the integrity of the hydrophobic core. The discovery that Delta114-121 counteracts misfolding and improves the cellular trafficking of mutant PrP provides an unprecedented model for assessing the role of intracellular aggregation in the pathogenesis of prion diseases.


International Journal of Cell Biology | 2013

Synaptic Dysfunction in Prion Diseases: A Trafficking Problem?

Assunta Senatore; Elena Restelli; Roberto Chiesa

Synaptic dysfunction is an important cause of neurological symptoms in prion diseases, a class of clinically heterogeneous neurodegenerative disorders caused by misfolding of the cellular prion protein (PrPC). Experimental data suggest that accumulation of misfolded PrPC in the endoplasmic reticulum (ER) may be crucial in synaptic failure, possibly because of the activation of the translational repression pathway of the unfolded protein response. Here, we report that this pathway is not operative in mouse models of genetic prion disease, consistent with our previous observation that ER stress is not involved. Building on our recent finding that ER retention of mutant PrPC impairs the secretory trafficking of calcium channels essential for synaptic function, we propose a model of pathogenicity in which intracellular retention of misfolded PrPC results in loss of function or gain of toxicity of PrPC-interacting proteins. This neurotoxic modality may also explain the phenotypic heterogeneity of prion diseases.


PLOS ONE | 2010

Cell Type-Specific Neuroprotective Activity of Untranslocated Prion Protein

Elena Restelli; Luana Fioriti; Susanna Mantovani; Simona Airaghi; Gianluigi Forloni; Roberto Chiesa

Background A key pathogenic role in prion diseases was proposed for a cytosolic form of the prion protein (PrP). However, it is not clear how cytosolic PrP localization influences neuronal viability, with either cytotoxic or anti-apoptotic effects reported in different studies. The cellular mechanism by which PrP is delivered to the cytosol of neurons is also debated, and either retrograde transport from the endoplasmic reticulum or inefficient translocation during biosynthesis has been proposed. We investigated cytosolic PrP biogenesis and effect on cell viability in primary neuronal cultures from different mouse brain regions. Principal Findings Mild proteasome inhibition induced accumulation of an untranslocated form of cytosolic PrP in cortical and hippocampal cells, but not in cerebellar granules. A cyclopeptolide that interferes with the correct insertion of the PrP signal sequence into the translocon increased the amount of untranslocated PrP in cortical and hippocampal cells, and induced its synthesis in cerebellar neurons. Untranslocated PrP boosted the resistance of cortical and hippocampal neurons to apoptotic insults but had no effect on cerebellar cells. Significance These results indicate cell type-dependent differences in the efficiency of PrP translocation, and argue that cytosolic PrP targeting might serve a physiological neuroprotective function.


Scientific Reports | 2016

A cationic tetrapyrrole inhibits toxic activities of the cellular prion protein

Tania Massignan; Sara Cimini; Claudia Stincardini; Milica Cerovic; Ilaria Vanni; Saioa R. Elezgarai; Jorge Moreno; Matteo Stravalaci; Alessandro Negro; Valeria Sangiovanni; Elena Restelli; Geraldina Riccardi; Marco Gobbi; Joaquín Castilla; Tiziana Borsello; Romolo Nonno; Emiliano Biasini

Prion diseases are rare neurodegenerative conditions associated with the conformational conversion of the cellular prion protein (PrPC) into PrPSc, a self-replicating isoform (prion) that accumulates in the central nervous system of affected individuals. The structure of PrPSc is poorly defined, and likely to be heterogeneous, as suggested by the existence of different prion strains. The latter represents a relevant problem for therapy in prion diseases, as some potent anti-prion compounds have shown strain-specificity. Designing therapeutics that target PrPC may provide an opportunity to overcome these problems. PrPC ligands may theoretically inhibit the replication of multiple prion strains, by acting on the common substrate of any prion replication reaction. Here, we characterized the properties of a cationic tetrapyrrole [Fe(III)-TMPyP], which was previously shown to bind PrPC, and inhibit the replication of a mouse prion strain. We report that the compound is active against multiple prion strains in vitro and in cells. Interestingly, we also find that Fe(III)-TMPyP inhibits several PrPC-related toxic activities, including the channel-forming ability of a PrP mutant, and the PrPC-dependent synaptotoxicity of amyloid-β (Aβ) oligomers, which are associated with Alzheimer’s Disease. These results demonstrate that molecules binding to PrPC may produce a dual effect of blocking prion replication and inhibiting PrPC-mediated toxicity.


The Journal of Neuroscience | 2017

Targeting extracellular cyclophilin A reduces neuroinflammation and extends survival in a mouse model of amyotrophic lateral sclerosis

Laura Pasetto; Silvia Pozzi; Mariachiara Castelnovo; Manuela Basso; Alvaro G. Estévez; Stefano Fumagalli; Maria Grazia De Simoni; Valeria Castellaneta; Paolo Bigini; Elena Restelli; Roberto Chiesa; Francesca Trojsi; Maria Rosaria Monsurrò; Leonardo Callea; Miroslav Malesevic; Gunter Fischer; Mattia Freschi; Massimo Tortarolo; Caterina Bendotti; Valentina Bonetto

Neuroinflammation is a major hallmark of amyotrophic lateral sclerosis (ALS), which is currently untreatable. Several anti-inflammatory compounds have been evaluated in patients and in animal models of ALS, but have been proven disappointing in part because effective targets have not yet been identified. Cyclophilin A, also known as peptidylprolyl cis-/trans-isomerase A (PPIA), as a foldase is beneficial intracellularly, but extracellularly has detrimental functions. We found that extracellular PPIA is a mediator of neuroinflammation in ALS. It is a major inducer of matrix metalloproteinase 9 and is selectively toxic for motor neurons. High levels of PPIA were found in the CSF of SOD1G93A mice and rats and sporadic ALS patients, suggesting that our findings may be relevant for familial and sporadic cases. A specific inhibitor of extracellular PPIA, MM218, given at symptom onset, rescued motor neurons and extended survival in the SOD1G93A mouse model of familial ALS by 11 d. The treatment resulted in the polarization of glia toward a prohealing phenotype associated with reduced NF-κB activation, proinflammatory markers, endoplasmic reticulum stress, and insoluble phosphorylated TDP-43. Our results indicates that extracellular PPIA is a promising druggable target for ALS and support further studies to develop a therapy to arrest or slow the progression of the disease in patients. SIGNIFICANCE STATEMENT We provide evidence that extracellular cyclophilin A, also known as peptidylprolyl cis-/trans-isomerase A (PPIA), is a mediator of the neuroinflammatory reaction in amyotrophic lateral sclerosis (ALS) and is toxic for motor neurons. Supporting this, a specific extracellular PPIA inhibitor reduced neuroinflammation, rescued motor neurons, and extended survival in the SOD1G93A mouse model of familial ALS. Our findings suggest selective pharmacological inhibition of extracellular PPIA as a novel therapeutic strategy, not only for SOD1-linked ALS, but possibly also for sporadic ALS. This approach aims to address the neuroinflammatory reaction that is a major hallmark of ALS. However, given the complexity of the disease, a combination of therapeutic approaches may be necessary.


Prion | 2016

Transgenic mice recapitulate the phenotypic heterogeneity of genetic prion diseases without developing prion infectivity: Role of intracellular PrP retention in neurotoxicity.

Roberto Chiesa; Elena Restelli; Liliana Comerio; Federico Del Gallo; Luca Imeri

abstract Genetic prion diseases are degenerative brain disorders caused by mutations in the gene encoding the prion protein (PrP). Different PrP mutations cause different diseases, including Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker (GSS) syndrome and fatal familial insomnia (FFI). The reason for this variability is not known. It has been suggested that prion strains with unique self-replicating and neurotoxic properties emerge spontaneously in individuals carrying PrP mutations, dictating the phenotypic expression of disease. We generated transgenic mice expressing the FFI mutation, and found that they developed a fatal neurological illness highly reminiscent of FFI, and different from those of similarly generated mice modeling genetic CJD and GSS. Thus transgenic mice recapitulate the phenotypic differences seen in humans. The mutant PrPs expressed in these mice are misfolded but unable to self-replicate. They accumulate in different compartments of the neuronal secretory pathway, impairing the membrane delivery of ion channels essential for neuronal function. Our results indicate that conversion of mutant PrP into an infectious isoform is not required for pathogenesis, and suggest that the phenotypic variability may be due to different effects of mutant PrP on intracellular transport.

Collaboration


Dive into the Elena Restelli's collaboration.

Top Co-Authors

Avatar

Roberto Chiesa

Polytechnic University of Milan

View shared research outputs
Top Co-Authors

Avatar

Gianluigi Forloni

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Fabio Fiordaliso

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Assunta Senatore

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Edoardo Micotti

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Fabrizio Tagliavini

Carlo Besta Neurological Institute

View shared research outputs
Top Co-Authors

Avatar

Ilaria Bertani

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Liliana Comerio

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge