Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elena Shvets is active.

Publication


Featured researches published by Elena Shvets.


The EMBO Journal | 2007

Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4.

Ruth Scherz-Shouval; Elena Shvets; Ephraim Fass; Hagai Shorer; Lidor Gil; Zvulun Elazar

Autophagy is a major catabolic pathway by which eukaryotic cells degrade and recycle macromolecules and organelles. This pathway is activated under environmental stress conditions, during development and in various pathological situations. In this study, we describe the role of reactive oxygen species (ROS) as signaling molecules in starvation‐induced autophagy. We show that starvation stimulates formation of ROS, specifically H2O2. These oxidative conditions are essential for autophagy, as treatment with antioxidative agents abolished the formation of autophagosomes and the consequent degradation of proteins. Furthermore, we identify the cysteine protease HsAtg4 as a direct target for oxidation by H2O2, and specify a cysteine residue located near the HsAtg4 catalytic site as a critical for this regulation. Expression of this regulatory mutant prevented the formation of autophagosomes in cells, thus providing a molecular mechanism for redox regulation of the autophagic process.


Developmental Cell | 2009

Lipophagy: Selective Catabolism Designed for Lipids

Hilla Weidberg; Elena Shvets; Zvulun Elazar

Until recently, degradation of lipid droplets (LDs) has been thought to take place in the cytosol by resident lipases. In a recent issue of Nature, Singh and coworkers describe the involvement of selective autophagy in the delivery of lipid droplets for lysosomal degradation.


Molecular Cell | 2009

A Role for NBR1 in Autophagosomal Degradation of Ubiquitinated Substrates

Vladimir Kirkin; Trond Lamark; Yu-shin Sou; Geir Bjørkøy; Jennifer L. Nunn; Jack-Ansgar Bruun; Elena Shvets; David G. McEwan; Terje Høyvarde Clausen; Philipp Wild; Ivana Bilusic; Jean-Philippe Theurillat; Aud Øvervatn; Tetsuro Ishii; Zvulun Elazar; Masaaki Komatsu; Ivan Dikic; Terje Johansen

Autophagy is a catabolic process where cytosolic cellular components are delivered to the lysosome for degradation. Recent studies have indicated the existence of specific receptors, such as p62, which link ubiquitinated targets to autophagosomal degradation pathways. Here we show that NBR1 (neighbor of BRCA1 gene 1) is an autophagy receptor containing LC3- and ubiquitin (Ub)-binding domains. NBR1 is recruited to Ub-positive protein aggregates and degraded by autophagy depending on an LC3-interacting region (LIR) and LC3 family modifiers. Although NBR1 and p62 interact and form oligomers, they can function independently, as shown by autophagosomal clearance of NBR1 in p62-deficient cells. NBR1 was localized to Ub-positive inclusions in patients with liver dysfunction, and depletion of NBR1 abolished the formation of Ub-positive p62 bodies upon puromycin treatment of cells. We propose that NBR1 and p62 act as receptors for selective autophagosomal degradation of ubiquitinated targets.


The EMBO Journal | 2010

LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis

Hilla Weidberg; Elena Shvets; Tomer Shpilka; Frida Shimron; Vera Shinder; Zvulun Elazar

Autophagy, a critical process for bulk degradation of proteins and organelles, requires conjugation of Atg8 proteins to phosphatidylethanolamine on the autophagic membrane. At least eight different Atg8 orthologs belonging to two subfamilies (LC3 and GATE‐16/GABARAP) occur in mammalian cells, but their individual roles and modes of action are largely unknown. In this study, we dissect the activity of each subfamily and show that both are indispensable for the autophagic process in mammalian cells. We further show that both subfamilies act differently at early stages of autophagosome biogenesis. Accordingly, our results indicate that LC3s are involved in elongation of the phagophore membrane whereas the GABARAP/GATE‐16 subfamily is essential for a later stage in autophagosome maturation.


Annual Review of Biochemistry | 2011

Biogenesis and cargo selectivity of autophagosomes.

Hilla Weidberg; Elena Shvets; Zvulun Elazar

Autophagy is a major catabolic pathway in eukaryotes, which is required for the lysosomal/vacuolar degradation of cytoplasmic proteins and organelles. Interest in the autophagy pathway has recently gained momentum largely owing to identification of multiple autophagy-related genes and recognition of its involvement in various physiological conditions. Here we review current knowledge of the molecular mechanisms regulating autophagy in mammals and yeast, specifically the biogenesis of autophagosomes and the selectivity of their cargo recruitment. We discuss the different steps of autophagy, from the signal transduction events that regulate it to the completion of this pathway by fusion with the lysosome/vacuole. We also review research on the origin of the autophagic membrane, the molecular mechanism of autophagosome formation, and the roles of two ubiquitin-like protein families and other structural elements that are essential for this process. Finally, we discuss the various modes of autophagy and highlight their functional relevance for selective degradation of specific cargos.


Journal of Biological Chemistry | 2006

Microtubules Support Production of Starvation-induced Autophagosomes but Not Their Targeting and Fusion with Lysosomes

Ephraim Fass; Elena Shvets; Ilan Degani; Koret Hirschberg; Zvulun Elazar

Autophagy is a major catabolic pathway in eukaryotic cells whereby the lack of amino acids induces the formation of autophagosomes, double-bilayer membrane vesicles that mediate delivery of cytosolic proteins and organelles for lysosomal degradation. The biogenesis and turnover of autophagosomes in mammalian cells as well as the molecular mechanisms underlying induction of autophagy and trafficking of these vesicles are poorly understood. Here we utilized different autophagic markers to determine the involvement of microtubules in the autophagic process. We show that autophagosomes associate with microtubules and concentrate near the microtubule-organizing center. Moreover, we demonstrate that autophagosomes, but not phagophores, move along these tracks en route for degradation. Disruption of microtubules leads to a significant reduction in the number of mature autophagosomes but does not affect their life span or their fusion with lysosomes. We propose that microtubules serve to deliver only mature autophagosomes for degradation, thus providing a spatial barrier between phagophores and lysosomes.


Autophagy | 2008

Utilizing flow cytometry to monitor autophagy in living mammalian cells

Elena Shvets; Ephraim Fass; Zvulun Elazar

Autophagy is a major intracellular catabolic pathway that takes part in diverse biological events including response to amino acid starvation, protein and organelle turnover, development, aging, pathogen infection and cell death. However, experimental methods to monitor this process in mammalian cells are limited due to lack of autophagic markers. Recently, MAP1-LC3 (LC3), a mammalian homologue of the ubiquitin-like (UBL) protein Atg8, was shown to selectively incorporate into autophagosome, thus serving as a unique bona fide marker of autophagosomes in mammals. However, current methods to quantify autophagic activity using LC3 are time-consuming, labor-intensive and require much experience for accurate interpretation. Here we took advantage of the Fluorescence Activated Cell Sorter (FACS) to quantify the turnover of GFP-LC3 as an assay to measure autophagic activity in living mammalian cells. We showed that during induction of autophagy by rapamycin, tunicamycin or starvation to amino acids, fluorescence intensity of GFP-LC3 is reduced in a time-dependent manner. This decrease occurred specifically in wild type LC3, but not in mutant LC3G120A, and was inhibited by autophagic or lysosomal inhibitors, indicating that this signal is specific to selective autophagy-mediated delivery of LC3 into lysosomes. By utilizing this assay, we tested the minimal nutrient requirement for the autophagic process and determined its induction by deprivation of specific single amino acids. We conclude that this approach can be successfully applied to different cell-lines as a reliable and simple method to quantify autophagic activity in living mammalian cells.


Journal of Cell Science | 2008

The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes

Elena Shvets; Ephraim Fass; Ruthie Scherz-Shouval; Zvulun Elazar

LC3 belongs to a novel ubiquitin-like protein family that is involved in different intracellular trafficking processes, including autophagy. All members of this family share a unique three-dimensional structure composed of a C-terminal ubiquitin core and two N-terminal α-helices. Here, we focus on the specific contribution of these regions to autophagy induced by amino acid deprivation. We show that the ubiquitin core by itself is sufficient for LC3 processing through the conjugation machinery and for its consequent targeting to the autophagosomal membrane. The N-terminal region was found to be important for interaction between LC3 and p62/SQSTM1 (hereafter termed p62). This interaction is dependent on the first 10 amino acids of LC3 and on specific residues located within the ubiquitin core. Knockdown of LC3 isoforms and overexpression of LC3 mutants that fail to interact with p62 blocked the incorporation of p62 into autophagosomes. The accumulation of p62 was accompanied by elevated levels of polyubiquitylated detergent-insoluble structures. p62, however, is not required for LC3 lipidation, autophagosome formation and targeting to lysosomes. Our results support the proposal that LC3 is responsible for recruiting p62 into autophagosomes, a process mediated by phenylalanine 52, located within the ubiquitin core, and the N-terminal region of the protein.


Autophagy | 2007

Oxidation as a Post-Translational Modification that Regulates Autophagy

Ruth Scherz-Shouval; Elena Shvets; Zvulun Elazar

The toxicity associated with accumulation of reactive oxygen species (ROS) has led to the evolution of various defense strategies to overcome oxidative stress, including autophagy. This pathway is involved in the removal and degradation of damaged mitochondria and oxidized proteins. At low levels, however, ROS act as signal transducers in various intracellular pathways. In a recent study we described the role of ROS as signaling molecules in starvation-induced autophagy. We showed that starvation stimulates formation of ROS, specifically H2O2, in the mitochondria. Furthermore, we identified the cysteine protease HsAtg4 as a direct target for oxidation by H2O2, and specified a cysteine residue located near the HsAtg4 catalytic site as critical for this regulation. Here we focus on Atg4, the target of regulation, and discuss possible mechanisms for the regulation of this enzyme in the autophagic process. Addendum to: Reactive Oxygen Species Are Essential for Autophagy and Specifically Regulate the Activity of Atg4 R. Scherz-Shouval, E. Shvets, E. Fass, H. Shorer, L. Gil and Z. Elazar EMBO J 2007; doi: 10.1038/sj.emboj.7601623


Nature Communications | 2013

Deletion of cavin genes reveals tissue-specific mechanisms for morphogenesis of endothelial caveolae

Carsten Gram Hansen; Elena Shvets; Gillian Howard; Kirsi Riento; Benjamin J. Nichols

Caveolae are abundant in endothelial cells and are thought to have important roles in endothelial cell biology. The cavin proteins are key components of caveolae, and are expressed at varied amounts in different tissues. Here we use knockout mice to determine the roles of cavins 2 and 3 in caveolar morphogenesis in vivo. Deletion of cavin 2 causes loss of endothelial caveolae in lung and adipose tissue, but has no effect on the abundance of endothelial caveolae in heart and other tissues. Changes in the morphology of endothelium in cavin 2 null mice correlate with changes in caveolar abundance. Cavin 3 is not required for making caveolae in the tissues examined. Cavin 2 determines the size of cavin complexes, and acts to shape caveolae. Cavin 1, however, is essential for normal oligomerization of caveolin 1. Our data reveal that endothelial caveolae are heterogeneous, and identify cavin 2 as a determinant of this heterogeneity.

Collaboration


Dive into the Elena Shvets's collaboration.

Top Co-Authors

Avatar

Zvulun Elazar

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Hilla Weidberg

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Benjamin J. Nichols

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Ephraim Fass

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Gillian Howard

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Tomer Shpilka

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Adi Abada

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Frida Shimron

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Ruth Scherz-Shouval

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Carolina Mendoza-Topaz

Laboratory of Molecular Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge