Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elena Soriano is active.

Publication


Featured researches published by Elena Soriano.


Accounts of Chemical Research | 2009

Mechanistic insights on the cycloisomerization of polyunsaturated precursors catalyzed by platinum and gold complexes.

Elena Soriano; José Marco-Contelles

Organometallic chemistry provides powerful tools for the stereocontrolled synthesis of heterocycles and carbocycles. The electrophilic transition metals Pt(II) and Au(I, III) are efficient catalysts in these transitions and promote a variety of organic transformations of unsaturated precursors. These reactions produce functionalized cyclic and acyclic scaffolds for the synthesis of natural and non-natural products efficiently, under mild conditions, and with excellent chemoselectivity. Because these transformations are strongly substrate-dependent, they are versatile and may yield diverse molecular scaffolds. Therefore, synthetic chemists need a mechanistic interpretation to optimize this reaction process and design a new generation of catalysts. However, so far, no intermediate species has been isolated or characterized, so the formulated mechanistic hypotheses have been primarily based on labeling studies or trapping reactions. Recently, theoretical DFT studies have become a useful tool in our research, giving us insights into the key intermediates and into a variety of plausible reaction pathways. In this Account, we present a comprehensive mechanistic overview of transformations promoted by Pt and Au in a non-nucleophilic medium based on quantum-mechanical studies. The calculations are consistent with the experimental observations and provide fundamental insights into the versatility of these reaction processes. The reactivity of these metals results from their peculiar Lewis acid properties: the alkynophilic character of these soft metals and the pi-acid activation of unsaturated groups promotes the intra- or intermolecular attack of a nucleophile. 1,n-Enynes (n = 3-8) are particularly important precursors, and their transformation may yield a variety of cycloadducts depending on the molecular structure. However, the calculations suggest that these different cyclizations would have closely related reaction mechanisms, and we propose a unified mechanistic picture. The intramolecular nucleophilic attack of the double bond on the activated alkyne takes place by an endo-dig or exo-dig pathway to afford a cyclopropyl-metallocarbenoid. Through divergent routes, the cyclopropyl intermediate formed by exo-cyclopropanation could yield the metathesis adduct or bicyclic compounds. The endo-cyclization may be followed by a [1,2]-migration of the propargyl moiety to the internal acetylenic position to afford bicyclic [n.1.0] derivatives. This reaction mechanism is applicable for functional groups ranging from H to carboxylate propargyl substituents (Rautenstrauch reaction). In intramolecular reactions in which a shorter enyne bears a propargyl ester or in intermolecular reactions of an ester with an alkene, the ester preferentially attacks the activated alkyne because of enthalpic (ring strain) and entropic effects. Our calculations can predict the correct stereochemical outcome, which may aid the rational design of further stereoselective syntheses. The alkynes activated by electrophilic species can also react with other nucleophiles, such as aromatic rings. The calculations account for the high endo-selectivity observed and suggest that this transformation takes place through a Friedel-Crafts-type alkenylation mechanism, where the endo-dig cyclization promoted by PtCl(2) may involve a cyclopropylmetallacarbene as intermediate before the formation of the expected Wheland-type intermediate. These comparisons of the computational approach with experiment demonstrate the value of theory in the development of a solid mechanistic understanding of these reaction processes.


Chemical Society Reviews | 2014

Allenes and computational chemistry: from bonding situations to reaction mechanisms

Elena Soriano; Israel Fernández

The present review is focused on the application of computational/theoretical methods to the wide and rich chemistry of allenes. Special emphasis is made on the interplay and synergy between experimental and computational methodologies, rather than on recent developments in methods and algorithms. Therefore, this review covers the state-of-the-art applications of computational chemistry to understand and rationalize the bonding situation and vast reactivity of allenes. Thus, the contents of this review span from the most fundamental studies on the equilibrium structure and chirality of allenes to recent advances in the study of complex reaction mechanisms involving allene derivatives in organic and organometallic chemistry.


European Journal of Medicinal Chemistry | 2014

Donepezil + propargylamine + 8-hydroxyquinoline hybrids as new multifunctional metal-chelators, ChE and MAO inhibitors for the potential treatment of Alzheimer's disease.

Li Wang; Gerard Esteban; Masaki Ojima; Oscar M. Bautista-Aguilera; Tsutomu Inokuchi; Ignacio Moraleda; Isabel Iriepa; Abdelouahid Samadi; Moussa B. H. Youdim; Alejandro Romero; Elena Soriano; Raquel Herrero; Ana Patricia Fernández; Ricardo-Martínez-Murillo; José Marco-Contelles; Mercedes Unzeta

The synthesis, biochemical evaluation, ADMET, toxicity and molecular modeling of novel multi-target-directed Donepezil + Propargylamine + 8-Hydroxyquinoline (DPH) hybrids 1-7 for the potential prevention and treatment of Alzheimers disease is described. The most interesting derivative was racemic α-aminotrile4-(1-benzylpiperidin-4-yl)-2-(((8-hydroxyquinolin-5-yl)methyl)(prop-2-yn-1-yl)amino) butanenitrile (DPH6) [MAO A (IC50 = 6.2 ± 0.7 μM; MAO B (IC50 = 10.2 ± 0.9 μM); AChE (IC50 = 1.8 ± 0.1 μM); BuChE (IC50 = 1.6 ± 0.25 μM)], an irreversible MAO A/B inhibitor and mixed-type AChE inhibitor with metal-chelating properties. According to docking studies, both DPH6 enantiomers interact simultaneously with the catalytic and peripheral site of EeAChE through a linker of appropriate length, supporting the observed mixed-type AChE inhibition. Both enantiomers exhibited a relatively similar position of both hydroxyquinoline and benzyl moieties with the rest of the molecule easily accommodated in the relatively large cavity of MAO A. For MAO B, the quinoline system was hosted at the cavity entrance whereas for MAO A this system occupied the substrate cavity. In this disposition the quinoline moiety interacted directly with the FAD aromatic ring. Very similar binding affinity values were also observed for both enantiomers with ChE and MAO enzymes. DPH derivatives exhibited moderate to good ADMET properties and brain penetration capacity for CNS activity. DPH6 was less toxic than donepezil at high concentrations; while at low concentrations both displayed a similar cell viability profile. Finally, in a passive avoidance task, the antiamnesic effect of DPH6 was tested on mice with experimentally induced amnesia. DPH6 was capable to significantly decrease scopolamine-induced learning deficits in healthy adult mice.


Chemistry: A European Journal | 2009

Regioselectivity Control in the Metal‐Catalyzed OC Functionalization of γ‐Allenols, Part 1: Experimental Study

Benito Alcaide; Pedro Almendros; Teresa Martínez del Campo; Elena Soriano; José Marco-Contelles

We describe versatile regiocontrolled metal-catalyzed heterocyclization reactions of gamma-allenol derivatives leading to a variety of fused enantiopure tetrahydrofurans, dihydropyrans, and tetrahydrooxepines. Regioselectivity control in the O-C functionalization of gamma-allenols can be achieved through the choice of catalyst: use of AuCl(3) exclusively affords tetrahydrofurans, use of La[N(SiMe(3))(2)](3) usually favors the formation of dihydropyrans, whereas use of PdCl(2) solely gives tetrahydrooxepines. In addition, it has been observed that for the Au-catalyzed cycloisomerization, the presence of a methoxymethyl protecting group not only masks a hydroxy functionality, but also exerts directing effects as a controlling unit in a regioselectivity reversal (7-endo versus 5-exo cyclization). In addition, the regioselectivity of the La-catalyzed cycloetherification can be tuned (5-exo versus 7-endo) simply through a subtle variation in the substitution pattern of the allene component (Ph versus Me). Thus, for the first time the regiocontrolled heterocyclization of gamma-allenol derivatives is both catalyst- and substrate-directable. These metal-catalyzed heterocyclization reactions have been developed experimentally (Part 1, this paper), and their mechanisms have additionally been investigated by a theoretical study (Part 2, accompanying paper).


European Journal of Medicinal Chemistry | 2014

Design, synthesis, pharmacological evaluation, QSAR analysis, molecular modeling and ADMET of novel donepezil–indolyl hybrids as multipotent cholinesterase/monoamine oxidase inhibitors for the potential treatment of Alzheimer's disease

Oscar M. Bautista-Aguilera; Gerard Esteban; Irene Bolea; Katarina Nikolic; Danica Agbaba; Ignacio Moraleda; Isabel Iriepa; Abdelouahid Samadi; Elena Soriano; Mercedes Unzeta; José Marco-Contelles

The design, synthesis, and pharmacological evaluation of donepezil-indolyl based amines 7-10, amides 12-16, and carboxylic acid derivatives 5 and 11, as multipotent ASS234 analogs, able to inhibit simultaneously cholinesterase (ChE) and monoamine oxidase (MAO) enzymes for the potential treatment of Alzheimers disease (AD), is reported. Theoretical studies using 3D-Quantitative Structure-Activity Relationship (3D-QSAR) was used to define 3D-pharmacophores for inhibition of MAO A/B, AChE, and BuChE enzymes. We found that, in general, and for the same substituent, amines are more potent ChE inhibitors (see compounds 12, 13 versus 7 and 8) or equipotent (see compounds 14, 15 versus 9 and 10) than the corresponding amides, showing a clear EeAChE inhibition selectivity. For the MAO inhibition, amides were not active, and among the amines, compound 14 was totally MAO A selective, while amines 15 and 16 were quite MAO A selective. Carboxylic acid derivatives 5 and 11 showed a multipotent moderate selective profile as EeACE and MAO A inhibitors. Propargylamine 15 [N-((5-(3-(1-benzylpiperidin-4-yl)propoxy)-1-methyl-1H-indol-2-yl)methyl)prop-2-yn-1-amine] resulted in the most potent hMAO A (IC50 = 5.5 ± 1.4 nM) and moderately potent hMAO B (IC50 = 150 ± 31 nM), EeAChE (IC50 = 190 ± 10 nM), and eqBuChE (IC50 = 830 ± 160 nM) inhibitor. However, the analogous N-allyl and the N-morpholine derivatives 16 and 14 deserve also attention as they show an attractive multipotent profile. To sum up, donepezil-indolyl hybrid 15 is a promising drug for further development for the potential prevention and treatment of AD.


Bioorganic & Medicinal Chemistry Letters | 2009

Synthesis and biological evaluation of 3,6-diamino-1H-pyrazolo[3,4-b]pyridine derivatives as protein kinase inhibitors

Mourad Chioua; Abdelouahid Samadi; Elena Soriano; Olivier Lozach; Laurent Meijer; José Marco-Contelles

The synthesis and biological evaluation of a number of differently substituted 3,6-diamino-1H-pyrazolo[3,4-b]pyridine derivatives are reported. From the inhibition results on a selection of disease-relevant protein kinases [IC(50) (microM) DYRK1A=11; CDK5=0.41; GSK-3=1.5] we have observed that 3,6-diamino-4-phenyl-1H-pyrazolo[3,4-b]pyridine-5-carbonitrile (4) constitutes a potential new and simple lead compound in the search of drugs for the treatment of Alzheimers disease.


ChemMedChem | 2015

Novel tacrine-grafted Ugi adducts as multipotent anti-Alzheimer drugs: a synthetic renewal in tacrine-ferulic acid hybrids

Mohamed Benchekroun; Manuela Bartolini; Javier Egea; Alejandro Romero; Elena Soriano; Marc Pudlo; Vincent Luzet; Vincenza Andrisano; María-Luisa Jimeno; Manuela G. López; Sarah Wehle; Tijani Gharbi; Bernard Refouvelet; Lucía de Andrés; Clara Herrera-Arozamena; Barbara Monti; Maria Laura Bolognesi; María Isabel Rodríguez-Franco; Michael W. Decker; José Marco-Contelles; Lhassane Ismaili

Herein we describe the design, multicomponent synthesis, and biological, molecular modeling and ADMET studies, as well as in vitro PAMPA‐blood–brain barrier (BBB) analysis of new tacrine–ferulic acid hybrids (TFAHs). We identified (E)‐3‐(hydroxy‐3‐methoxyphenyl)‐N‐{8[(7‐methoxy‐1,2,3,4‐tetrahydroacridin‐9‐yl)amino]octyl}‐N‐[2‐(naphthalen‐2‐ylamino)2‐oxoethyl]acrylamide (TFAH 10 n) as a particularly interesting multipotent compound that shows moderate and completely selective inhibition of human butyrylcholinesterase (IC50=68.2 nM), strong antioxidant activity (4.29 equiv trolox in an oxygen radical absorbance capacity (ORAC) assay), and good β‐amyloid (Aβ) anti‐aggregation properties (65.6 % at 1:1 ratio); moreover, it is able to permeate central nervous system (CNS) tissues, as determined by PAMPA‐BBB assay. Notably, even when tested at very high concentrations, TFAH 10 n easily surpasses the other TFAHs in hepatotoxicity profiling (59.4 % cell viability at 1000 μM), affording good neuroprotection against toxic insults such as Aβ1–40, Aβ1–42, H2O2, and oligomycin A/rotenone on SH‐SY5Y cells, at 1 μM. The results reported herein support the development of new multipotent TFAH derivatives as potential drugs for the treatment of Alzheimer′s disease.


Chemistry: A European Journal | 2009

Metal‐Catalyzed Cyclization of β‐ and γ‐Allenols Derived from D‐Glyceraldehyde—Synthesis of Enantiopure Dihydropyrans and Tetrahydrooxepines: An Experimental and Theoretical Study

Benito Alcaide; Pedro Almendros; Teresa Martínez del Campo; Elena Soriano; José Marco-Contelles

Regiocontrolled metal-catalyzed preparations of enantiopure dihydropyrans and tetrahydrooxepines have been synthesized starting from beta- and gamma-allenols derived from D-glyceraldehyde. The Pd(II)-catalyzed cyclizative coupling reactions of beta-allenols 1 a and 1 b with allyl bromide effectively afforded enantiopure tetrafunctionalized dihydropyrans through a 6-endo oxycyclization protocol, whereas the gold-, platinum-, and palladium-mediated heterocyclization of gamma-allenol 2 furnished tetrahydrooxepines 13-16 through regioselective 7-endo-trig oxycyclization reactions. Moreover, density functional calculations were performed to predict the regioselectivity of the gamma-allenol cycloetherification to tetrahydrooxepines on the basis of both the tether nature and characteristics of the metals, and to gain an insight into the mechanism of the oxycyclization reactions.


Journal of Organic Chemistry | 2009

Mechanism of the Gold-Catalyzed Rearrangement of (3-Acyloxyprop-1-ynyl)oxiranes : A Dual Role of the Catalyst

Adán B. González Pérez; Carlos Silva López; José Marco-Contelles; Olalla Nieto Faza; Elena Soriano; Angel R. de Lera

The three competing paths for the rearrangement of 1 (involving 1,2- and 1,3-ester migration with alkyne or oxirane activation) evidence the multifaceted character of gold as a catalyst. The most favorable mechanism for this useful synthetic transformation involves a cascade of more than eight steps. All the functional groups in the substrate play a crucial and synergistic role, and sequential gold coordination to both the pi-system and the lone pairs of oxygen is needed. Exploration of these three paths suggests the use of a nonalkynophilic Lewis acid (BF(3)) as a possible synthetic alternative for this transformation.


Chemical Communications | 2011

A practical two-step synthesis of imidazo[1,2-a]pyridines from N-(prop-2-yn-1-yl)pyridin-2-amines.

David Sucunza; Abdelouahid Samadi; Mourad Chioua; Daniel B. Silva; Cristina Yunta; Lourdes Infantes; M. Carmo Carreiras; Elena Soriano; José Marco-Contelles

The Sandmeyer reaction of differently C-2 substituted N-(prop-2-yn-1-ylamino)pyridines is an efficient, mild, new and practical method for the stereospecific synthesis of (E)-exo-halomethylene bicyclic pyridones bearing the imidazo[1,2-a]pyridine heterocyclic ring system.

Collaboration


Dive into the Elena Soriano's collaboration.

Top Co-Authors

Avatar

José Marco-Contelles

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Abdelouahid Samadi

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Mourad Chioua

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Elena Pérez-Mayoral

National University of Distance Education

View shared research outputs
Top Co-Authors

Avatar

Rosa M. Martín-Aranda

National University of Distance Education

View shared research outputs
Top Co-Authors

Avatar

Benito Alcaide

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Albert Nguyen Van Nhien

University of Picardie Jules Verne

View shared research outputs
Top Co-Authors

Avatar

Denis Postel

University of Picardie Jules Verne

View shared research outputs
Top Co-Authors

Avatar

Pedro Almendros

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

A.J. López-Peinado

National University of Distance Education

View shared research outputs
Researchain Logo
Decentralizing Knowledge