Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elena Usova is active.

Publication


Featured researches published by Elena Usova.


Journal of Biological Chemistry | 2008

2′-Deoxy-4′-azido Nucleoside Analogs Are Highly Potent Inhibitors of Hepatitis C Virus Replication Despite the Lack of 2′-α-Hydroxyl Groups

Klaus Klumpp; Genadiy Kalayanov; Han Ma; Sophie Le Pogam; Vincent Leveque; Wen-Rong Jiang; Nicole Inocencio; Anniek De Witte; Sonal Rajyaguru; Ezra Tai; Sushmita Chanda; Michael R. Irwin; Christian Sund; Anna Winqist; T. V. Maltseva; Staffan Eriksson; Elena Usova; Mark A. Smith; Andre Alker; Isabel Najera; Nick Cammack; Joseph Armstrong Martin; Nils Gunnar Johansson; David W. Smith

RNA polymerases effectively discriminate against deoxyribonucleotides and specifically recognize ribonucleotide substrates most likely through direct hydrogen bonding interaction with the 2′-α-hydroxy moieties of ribonucleosides. Therefore, ribonucleoside analogs as inhibitors of viral RNA polymerases have mostly been designed to retain hydrogen bonding potential at this site for optimal inhibitory potency. Here, two novel nucleoside triphosphate analogs are described, which are efficiently incorporated into nascent RNA by the RNA-dependent RNA polymerase NS5B of hepatitis C virus (HCV), causing chain termination, despite the lack of α-hydroxy moieties. 2′-Deoxy-2′-β-fluoro-4′-azidocytidine (RO-0622) and 2′-deoxy-2′-β-hydroxy-4′-azidocytidine (RO-9187) were excellent substrates for deoxycytidine kinase and were phosphorylated with efficiencies up to 3-fold higher than deoxycytidine. As compared with previous reports on ribonucleosides, higher levels of triphosphate were formed from RO-9187 in primary human hepatocytes, and both compounds were potent inhibitors of HCV virus replication in the replicon system (IC50 = 171 ± 12 nm and 24 ± 3 nm for RO-9187 and RO-0622, respectively; CC50 >1 mm for both). Both compounds inhibited RNA synthesis by HCV polymerases from either HCV genotypes 1a and 1b or containing S96T or S282T point mutations with similar potencies, suggesting no cross-resistance with either R1479 (4′-azidocytidine) or 2′-C-methyl nucleosides. Pharmacokinetic studies with RO-9187 in rats and dogs showed that plasma concentrations exceeding HCV replicon IC50 values 8-150-fold could be achieved by low dose (10 mg/kg) oral administration. Therefore, 2′-α-deoxy-4′-azido nucleosides are a new class of antiviral nucleosides with promising preclinical properties as potential medicines for the treatment of HCV infection.


Journal of Biological Chemistry | 2007

2'-deoxy-4'-azido nucleoside analogs are highly potent inhibitors of HCV replication despite the lack of 2'-alpha hydroxyl groups

Klaus Klumpp; Genadiy Kalayanov; Han Ma; Sophie Le Pogam; Vincent Leveque; Wen-Rong Jiang; Nicole Inocencio; Anniek De Witte; Sonal Rajyaguru; Ezra Tai; Sushmita Chanda; Michael R. Irwin; Christian Sund; Anna Winqist; T. V. Maltseva; Staffan Eriksson; Elena Usova; Mark A. Smith; Andre Alker; Isabel Najera; Nick Cammack; Joseph Armstrong Martin; Nils Gunnar Johansson; David W. Smith

RNA polymerases effectively discriminate against deoxyribonucleotides and specifically recognize ribonucleotide substrates most likely through direct hydrogen bonding interaction with the 2′-α-hydroxy moieties of ribonucleosides. Therefore, ribonucleoside analogs as inhibitors of viral RNA polymerases have mostly been designed to retain hydrogen bonding potential at this site for optimal inhibitory potency. Here, two novel nucleoside triphosphate analogs are described, which are efficiently incorporated into nascent RNA by the RNA-dependent RNA polymerase NS5B of hepatitis C virus (HCV), causing chain termination, despite the lack of α-hydroxy moieties. 2′-Deoxy-2′-β-fluoro-4′-azidocytidine (RO-0622) and 2′-deoxy-2′-β-hydroxy-4′-azidocytidine (RO-9187) were excellent substrates for deoxycytidine kinase and were phosphorylated with efficiencies up to 3-fold higher than deoxycytidine. As compared with previous reports on ribonucleosides, higher levels of triphosphate were formed from RO-9187 in primary human hepatocytes, and both compounds were potent inhibitors of HCV virus replication in the replicon system (IC50 = 171 ± 12 nm and 24 ± 3 nm for RO-9187 and RO-0622, respectively; CC50 >1 mm for both). Both compounds inhibited RNA synthesis by HCV polymerases from either HCV genotypes 1a and 1b or containing S96T or S282T point mutations with similar potencies, suggesting no cross-resistance with either R1479 (4′-azidocytidine) or 2′-C-methyl nucleosides. Pharmacokinetic studies with RO-9187 in rats and dogs showed that plasma concentrations exceeding HCV replicon IC50 values 8-150-fold could be achieved by low dose (10 mg/kg) oral administration. Therefore, 2′-α-deoxy-4′-azido nucleosides are a new class of antiviral nucleosides with promising preclinical properties as potential medicines for the treatment of HCV infection.


Nucleosides, Nucleotides & Nucleic Acids | 2001

SYNTHESIS AND BIOLOGICAL EVALUATION OF BORONATED NUCLEOSIDES FOR BORON NEUTRON CAPTURE THERAPY (BNCT) OF CANCER

Werner Tjarks; Jianghai Wang; S. Chandra; Weihua Ji; Jin-Cong Zhuo; Anthony J. Lunato; C. Boyer; Q. Li; Elena Usova; Staffan Eriksson; G. H. Morrison; Guirec Y. Cosquer

Several N-3 substituted carboranyl Thd analogs were synthesized. These agents as well as some non-boronated nucleosides were evaluated in phosphoryl transfer assays with recombinant human TK1 and TK2. For some carboranyl thymidine analogs, TK1 phosphorylation rates approached 38% that of thymidine. Their in vitro cytotoxicty appeared to correlate with the TK1 levels in the tested cells. In some cases increased uptake in tumor cell nuclei compared with the surrounding cytoplasm was detected in vitro.


Biochemical Pharmacology | 2002

Identification of residues involved in the substrate specificity of human and murine dCK.

Elena Usova; Staffan Eriksson

Deoxycytidine kinase (dCK) is a salvage pathway enzyme that can phosphorylate both pyrimidine and purine deoxynucleosides, including important antiviral and cytostatic agents. Earlier studies showed that there are differences in kinetic properties between human and murine dCK, which may explain differences in toxic effects of nucleoside analogs. To determine if certain substitutions in amino acid sequences between human and mouse dCK give these differences in substrate specificity the 14 mutants and hybrid forms of human dCK were studied. All variants were characterised with dCyd, dAdo and dGuo as phosphate acceptors and ATP and UTP as phosphate donor. The relative activities with dCyd, dAdo and dGuo were about 70, 20, 30%, respectively, with UTP as compared to ATP for human dCK and 40, 60, 70% for mouse dCK. Among all tested mutants only the triple combination of substitutions Q179R-T184K-H187N (RKN) had a kinetic behaviour very similar to mouse dCK. The kinetic patterns with several important nucleoside analogs, such as AraC, CdA, ddC and AraG have also been studied. Results demonstrated 50-70% low relative capacities of the recombinant mouse and triple mutant RKN to phosphorylate this nucleoside analogs compare with human dCK. A model for dCK was used to try to explain the functional role of these amino acid substitutions. According to this model the triple mutant RKN have altered amino acids in a region necessary for conformational changes during catalyses. This may affects the substrate selectivity both for the nucleosides and the phosphate donors.


Nucleosides, Nucleotides & Nucleic Acids | 2003

Hydrodynamic and Spectroscopic Studies of Substrate Binding to Human Recombinant Deoxycytidine Kinase

Rajam S. Mani; Elena Usova; Staffan Eriksson; Carol E. Cass

Abstract Deoxycytidine kinase (dCK), a cytosolic enzyme with broad substrate specificity, plays a key role in the activation of therapeutic nucleoside analogues by their 5′-phosphorylation. The structure of human dCK is still not known and the current work was undertaken to determine its oligomeric and secondary structure. Biophysical studies were conducted with purified recombinant human dCK. The Mr determined by low-speed sedimentation equilibrium under nondenaturing conditions was 60,250 ± 1,000, indicating that dCK, which has a predicted Mr of 30,500, exists in solution as a dimer. Analysis of circular dichroism spectra revealed the presence of two negative dichroic bands located at 222 and 209 nm with ellipticity values of –11,900 ± 300 and −12,500 ± 300 deg·cm2·dmol−1, respectively, indicating the presence of approximately 40% α-helix and 50% β-structure. Circular Dichroism studies in the aromatic and far-ultraviolet range and UV difference spectroscopy indicated that binding of substrates to dCK reduced its α-helical content and perturbed tryptophan and tyrosine. Steady-state fluorescence demonstrated that deoxycytidine (the phosphate acceptor) and ATP (the phosphate donor) bound to different sites on dCK and fluorescence quenching revealed bimodal binding of deoxycytidine and unimodal binding of ATP. Spectroscopic studies indicated that substrate binding induced conformational changes, with the result that dCK exhibited different affinities for various substrates. These results are consistent with a random bi-bi kinetic mechanism of phosphorylation of dCyd with either ATP or UTP.


Nucleosides, Nucleotides & Nucleic Acids | 2001

The NMR conformation study of the complexes of deoxycytidine kinase (dCK) and 2'-deoxycytidine/2'-deoxyadenosine.

T. V. Maltseva; Elena Usova; Staffan Eriksson; J Milecki; András Földesi; Jyoti Chattopadhayaya

The structures of the bound 13C/2H double-labelled 2′(R/S), 5′(R/S)-2H2-1′,2′,3′,4′,5′-13C5-2′-deoxyadenosine and the corresponding 2′-deoxycytidine moieties in the complexes with human deoxycytidine kinase (dCK) have been characterized for the first time by the solution NMR spectroscopy, using Transferred Dipole-Dipole Cross-correlated Relaxation and Transferred nOe experiments. It has been shown that the ligand adopts a South-type sugar conformation when bound to dCK.


Nucleosides, Nucleotides & Nucleic Acids | 2004

Fluorescence studies of substrate binding to human recombinant deoxycytidine kinase

Rajam S. Mani; Elena Usova; Staffan Eriksson; Carol E. Cass

Deoxycytidine kinase (dCK), is responsible for the phosphorylation of deoxynucleosides to the corresponding monophosphates using ATP or UTP as phosphate donors. Steady‐state intrinsic fluorescence measurements were used to study interaction of dCK with substrates in the absence and presence of phosphate donors. Enzyme fluorescence quenching by its substrates exhibited unimodal quenching when excited at 295 nm. Binding of substrates induced conformational changes in the protein, suggesting that dCK can assume different conformational states with different substrates and may account for the observed differences in their specificity. dCK bound the substrates more tightly in the presence of phosphate donors and UTP is the preferred phosphate donor. Among the substrates tested, the antitumour drugs gemcitabine and cladribine were bound very tightly by dCK, yielding Kd values of 0.75 and 0.8 µM, respectively, in the presence of UTP.


FEBS Journal | 1997

The Effects of High Salt Concentrations on the Regulation of the Substrate Specificity of Human Recombinant Deoxycytidine Kinase

Elena Usova; Staffan Eriksson


Bioorganic & Medicinal Chemistry | 2006

Hydrophilically enhanced 3-carboranyl thymidine analogues (3CTAs) for boron neutron capture therapy (BNCT) of cancer.

Sureshbabu Narayanasamy; B. T. S. Thirumamagal; Jayaseharan Johnsamuel; Youngjoo Byun; Ashraf S. Al-Madhoun; Elena Usova; Guirec Y. Cosquer; Junhua Yan; Achintya K. Bandyopadhyaya; Rohit Tiwari; Staffan Eriksson; Werner Tjarks


Biochemistry | 1999

A pre-steady-state kinetic analysis of substrate binding to human recombinant deoxycytidine kinase: a model for nucleoside kinase action.

Boris Turk; Raymond Awad; Elena Usova; Ingemar Björk; Staffan Eriksson

Collaboration


Dive into the Elena Usova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nils Gunnar Johansson

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge