Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elena V. Knatko is active.

Publication


Featured researches published by Elena V. Knatko.


Nature | 2018

Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1.

Evanna L. Mills; Dylan G. Ryan; Hiran A. Prag; Dina Dikovskaya; Deepthi Menon; Zbigniew Zasłona; Mark P. Jedrychowski; Ana S.H. Costa; Maureen Higgins; Emily Hams; John Szpyt; Marah C. Runtsch; M. King; Joanna F. McGouran; R. Fischer; Benedikt M. Kessler; Anne F. McGettrick; Mark M. Hughes; Richard G. Carroll; Lee M. Booty; Elena V. Knatko; Paul J. Meakin; Michael L.J. Ashford; Louise K. Modis; Gino Brunori; Daniel C. Sévin; Padraic G. Fallon; Stuart T. Caldwell; Edmund R. S. Kunji; Edward T. Chouchani

The endogenous metabolite itaconate has recently emerged as a regulator of macrophage function, but its precise mechanism of action remains poorly understood. Here we show that itaconate is required for the activation of the anti-inflammatory transcription factor Nrf2 (also known as NFE2L2) by lipopolysaccharide in mouse and human macrophages. We find that itaconate directly modifies proteins via alkylation of cysteine residues. Itaconate alkylates cysteine residues 151, 257, 288, 273 and 297 on the protein KEAP1, enabling Nrf2 to increase the expression of downstream genes with anti-oxidant and anti-inflammatory capacities. The activation of Nrf2 is required for the anti-inflammatory action of itaconate. We describe the use of a new cell-permeable itaconate derivative, 4-octyl itaconate, which is protective against lipopolysaccharide-induced lethality in vivo and decreases cytokine production. We show that type I interferons boost the expression of Irg1 (also known as Acod1) and itaconate production. Furthermore, we find that itaconate production limits the type I interferon response, indicating a negative feedback loop that involves interferons and itaconate. Our findings demonstrate that itaconate is a crucial anti-inflammatory metabolite that acts via Nrf2 to limit inflammation and modulate type I interferons.


Cancer Prevention Research | 2015

Nrf2 activation protects against solar-simulated ultraviolet radiation in mice and humans

Elena V. Knatko; Sally H. Ibbotson; Ying Zhang; Maureen Higgins; Jed W. Fahey; Paul Talalay; R.S. Dawe; J. Ferguson; Jeffrey T.-J. Huang; Rosemary G. Clarke; Suqing Zheng; Akira Saito; Sukirti Kalra; Andrea L. Benedict; Tadashi Honda; Charlotte M. Proby; Albena T. Dinkova-Kostova

The transcription factor Nrf2 determines the ability to adapt and survive under conditions of electrophilic, oxidative, and inflammatory stress by regulating the expression of elaborate networks comprising nearly 500 genes encoding proteins with versatile cytoprotective functions. In mice, disruption of Nrf2 increases susceptibility to carcinogens and accelerates disease pathogenesis. Paradoxically, Nrf2 is upregulated in established human tumors, but whether this upregulation drives carcinogenesis is not known. Here we show that the incidence, multiplicity, and burden of solar-simulated UV radiation–mediated cutaneous tumors that form in SKH-1 hairless mice in which Nrf2 is genetically constitutively activated are lower than those that arise in their wild-type counterparts. Pharmacologic Nrf2 activation by topical biweekly applications of small (40 nmol) quantities of the potent bis(cyano enone) inducer TBE-31 has a similar protective effect against solar-simulated UV radiation in animals receiving long-term treatment with the immunosuppressive agent azathioprine. Genetic or pharmacologic Nrf2 activation lowers the expression of the pro-inflammatory factors IL6 and IL1β, and COX2 after acute exposure of mice to UV radiation. In healthy human subjects, topical applications of extracts delivering the Nrf2 activator sulforaphane reduced the degree of solar-simulated UV radiation–induced skin erythema, a quantifiable surrogate endpoint for cutaneous damage and skin cancer risk. Collectively, these data show that Nrf2 is not a driver for tumorigenesis even upon exposure to a very potent and complete carcinogen and strongly suggest that the frequent activation of Nrf2 in established human tumors is a marker of metabolic adaptation. Cancer Prev Res; 8(6); 475–86. ©2015 AACR.


Carcinogenesis | 2012

The indirect antioxidant sulforaphane protects against thiopurine-mediated photooxidative stress

Andrea L. Benedict; Elena V. Knatko; Albena T. Dinkova-Kostova

Long-term treatment with thiopurines, such as the widely used anticancer, immunosuppressive and anti-inflammatory agent azathioprine, combined with exposure to ultraviolet (UV) radiation is associated with increased oxidative stress, hyperphotosensitivity and high risk for development of aggressive squamous cell carcinomas of the skin. Sulforaphane, an isothiocyanate derived from broccoli, is a potent inducer of endogenous cellular defenses regulated by transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), including cytoprotective enzymes and glutathione, which in turn act as efficient indirect and direct antioxidants that have long-lasting effects. Treatment with 6-thioguanine, a surrogate for azathioprine, leads to profound sensitization to oxidative stress and glutathione depletion upon exposure to UVA radiation, the damaging effects of which are primarily mediated by generation of reactive oxygen species. The degree of sensitization is greater for irradiation exposures spanning the absorption spectrum of 6-thioguanine, and is dependent on the length of treatment and the level of guanine substitution with 6-thioguanine, suggesting that the 6-thioguanine that is incorporated in genomic DNA is largely responsible for this sensitization. Sulforaphane provides protection against UVA, but not UVB, radiation without affecting the levels of 6-thioguanine incorporation into DNA. The protective effect is lost under conditions of Nrf2 deficiency, implying that it is due to induction of Nrf2-dependent cytoprotective proteins, and that this strategy could provide protection against any potentially photosensitizing drugs that generate electrophilic or reactive oxygen species. Thus, our findings support the development of Nrf2 activators as protectors against drug-mediated photooxidative stress and encourage future clinical trials in populations at high risk for cutaneous photodamage and photocarcinogenesis.


Cancer Prevention Research | 2012

Highly Potent Activation of Nrf2 by Topical Tricyclic Bis(Cyano Enone): Implications for Protection against UV Radiation during Thiopurine Therapy

Sukirti Kalra; Elena V. Knatko; Ying Zhang; Tadashi Honda; Masayuki Yamamoto; Albena T. Dinkova-Kostova

Chronic treatment with azathioprine, a highly effective anti-inflammatory and immunosuppressive agent, profoundly increases the risk for development of unusually aggressive cutaneous squamous cell carcinoma. Its ultimate metabolite, 6-thioguanine (6-TG) nucleotide, is incorporated in DNA of skin cells, and upon exposure to UVA radiation, causes oxidative stress, followed by damage of DNA and associated proteins. The acetylenic tricyclic bis(cyano enone) TBE-31 is a strong inhibitor of inflammation and a potent inducer of the Keap1/Nrf2/ARE pathway, which orchestrates the expression of a large network of cytoprotective genes. We now report that long-term (five days per week for four weeks) topical daily applications of small (200 nmol) quantities of TBE-31 cause a robust systemic induction of the Keap1/Nrf2/ARE pathway and decreases the 6-TG incorporation in DNA of skin, blood, and liver of azathioprine-treated mice, indicating extraordinary bioavailability and efficacy. In addition, TBE-31, at nanomolar concentrations, protects cells with 6-TG in their genomic DNA against oxidative stress caused by UVA radiation through induction of the Keap1/Nrf2/ARE pathway. At the same 6-TG DNA levels, Keap1-knockout cells, in which the pathway is constitutively upregulated, are highly resistant to UVA radiation–induced oxidative stress. The protective effects of both the Keap1-knockout genotype and TBE-31 are completely lost in the absence of transcription factor Nrf2. Our findings suggest that compounds of this kind are excellent candidates for mechanism-based chemoprotective agents against conditions in which oxidative stress and inflammation underlie disease pathogenesis. Moreover, their potential skin patch incorporation for transdermal delivery is an exciting possibility. Cancer Prev Res; 5(7); 973–81. ©2012 AACR.


Molecular Therapy | 2017

Activation of Nrf2 Signaling Augments Vesicular Stomatitis Virus Oncolysis via Autophagy-Driven Suppression of Antiviral Immunity

David Olagnier; Rassin R. Lababidi; Samar Bel Hadj; Alexandre Sze; Yiliu Liu; Sharadha Dayalan Naidu; Matteo Ferrari; Yuan Jiang; Cindy Chiang; Vladimir Beljanski; Marie Line Goulet; Elena V. Knatko; Albena T. Dinkova-Kostova; John Hiscott; Rongtuan Lin

Oncolytic viruses (OVs) offer a promising therapeutic approach to treat multiple types of cancer. In this study, we show that the manipulation of the antioxidant network via transcription factor Nrf2 augments vesicular stomatitis virus Δ51 (VSVΔ51) replication and sensitizes cancer cells to viral oncolysis. Activation of Nrf2 signaling by the antioxidant compound sulforaphane (SFN) leads to enhanced VSVΔ51 spread in OV-resistant cancer cells and improves the therapeutic outcome in different murine syngeneic and xenograft tumor models. Chemoresistant A549 lung cancer cells that display constitutive dominant hyperactivation of Nrf2 signaling are particularly vulnerable to VSVΔ51 oncolysis. Mechanistically, enhanced Nrf2 signaling stimulated viral replication in cancer cells and disrupted the type I IFN response via increased autophagy. This study reveals a previously unappreciated role for Nrf2 in the regulation of autophagy and the innate antiviral response that complements the therapeutic potential of VSV-directed oncolysis against multiple types of OV-resistant or chemoresistant cancer.


Cancer Prevention Research | 2011

Oral azathioprine leads to higher incorporation of 6-thioguanine in DNA of skin than liver: the protective role of the Keap1/Nrf2/ARE pathway.

Sukirti Kalra; Ying Zhang; Elena V. Knatko; Stewart Finlayson; Masayuki Yamamoto; Albena T. Dinkova-Kostova

Azathioprine is a widely used anti-inflammatory, immunosuppressive, and anticancer agent. However, chronic treatment with this drug is associated with a profoundly increased risk (in certain cases by more than 100-fold) of developing squamous cell carcinoma of the skin. Incorporation of its ultimate metabolite, thio-dGTP, in DNA results in partial substitution of guanine with 6-thioguanine which, combined with exposure to UVA radiation, creates a source of synergistic mutagenic damage to DNA. We now report that oral treatment with azathioprine leads to a much greater incorporation of 6-thioguanine in DNA of mouse skin than liver. These higher levels of 6-thioguanine, together with the fact that the skin is constantly exposed to UV radiation from the sun, may be responsible, at least in part, for the increased susceptibility of this organ to tumor development. Genetic upregulation of the Keap1/Nrf2/ARE pathway, a major cellular regulator of the expression of a network of cytoprotective genes, reduces the incorporation of 6-thioguanine in DNA of both skin and liver following treatment with azathioprine. Similarly, pharmacologic activation of the pathway by the potent inducer sulforaphane results in lower 6-thioguanine incorporation in DNA and protects 6-thioguanine–treated cells against oxidative stress following exposure to UVA radiation. Protection is accompanied by increased levels of glutathione and induction of multidrug resistance-associated protein 4, an organic anion efflux pump that also exports nucleoside monophosphate analogues. Our findings suggest that activation of the Keap1/Nrf2/ARE pathway could reduce the risk for skin cancer in patients receiving long-term azathioprine therapy. Cancer Prev Res; 4(10); 1665–74. ©2011 AACR.


Scientific Reports | 2016

Loss of Nrf2 abrogates the protective effect of Keap1 downregulation in a preclinical model of cutaneous squamous cell carcinoma

Elena V. Knatko; Maureen Higgins; Jed W. Fahey; Albena T. Dinkova-Kostova

Cutaneous squamous cell carcinomas (cSCC) are the most common and highly mutated human malignancies, challenging identification of driver mutations and targeted therapies. Transcription factor NF-E2 p45-related factor 2 (Nrf2) orchestrates a cytoprotective inducible program, which counteracts the damaging effects of solar UV radiation, the main etiological factor in cSCC development. Downregulation of Kelch-like ECH-associated protein 1 (Keap1), a Cullin-3/Rbx1 ubiquitin ligase substrate adaptor protein, which mediates the ubiquitination and proteasomal degradation of Nrf2, has a strong protective effect in a preclinical model of cSCC. However, in addition to Nrf2, Keap1 affects ubiquitination of other proteins in the carcinogenesis process, including proteins involved in inflammation and DNA damage repair. Here, we generated Keap1flox/flox SKH-1 hairless mice in which Nrf2 is disrupted (Keap1flox/flox/Nrf2−/−) and subjected them chronically to solar-simulated UV radiation. We found that the incidence, multiplicity and burden of cSCC that form in Keap1flox/flox/Nrf2−/− mice are much greater than in their Keap1flox/flox/Nrf2+/+ counterparts, establishing Nrf2 activation as the protection mediator. Our findings further imply that inhibition of Nrf2 globally, a strategy proposed for cancer treatment, is unlikely to be beneficial.


Biochemical and Biophysical Research Communications | 2015

Pharmacokinetics and pharmacodynamics of orally administered acetylenic tricyclic bis(cyanoenone), a highly potent Nrf2 activator with a reversible covalent mode of action.

Rumen V. Kostov; Elena V. Knatko; Lesley A. McLaughlin; Colin J. Henderson; Suqing Zheng; Jeffrey T.-J. Huang; Tadashi Honda; Albena T. Dinkova-Kostova

The acetylenic tricyclic bis(cyanoenone) TBE-31 is a highly potent cysteine targeting compound with a reversible covalent mode of action; its best-characterized target being Kelch-like ECH-associated protein-1 (Keap1), the cellular sensor for oxidants and electrophiles. TBE-31 reacts with cysteines of Keap1, impairing its ability to target nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) for degradation. Consequently, Nrf2 accumulates and orchestrates cytoprotective gene expression. In this study we investigated the pharmacokinetic and pharmacodynamic properties of TBE-31 in C57BL/6 mice. After a single oral dose of 10 μmol/kg (∼200 nmol/animal), the concentration of TBE-31 in blood exhibited two peaks, at 22.3 nM and at 15.5 nM, 40 min and 4 h after dosing, respectively, as determined by a quantitative stable isotope dilution LC-MS/MS method. The AUC0–24h was 195.5 h/nmol/l, the terminal elimination half-life was 10.2 h, and the kel was 0.068 h−1. To assess the pharmacodynamics of Nrf2 activation by TBE-31, we determined the enzyme activity of its prototypic target, NAD(P)H:quinone oxidoreductase 1 (NQO1) and found it elevated by 2.4- and 1.5-fold in liver and heart, respectively. Continuous feeding for 18 days with diet delivering the same daily doses of TBE-31 under conditions of concurrent treatment with the immunosuppressive agent azathioprine had a similar effect on Nrf2 activation without any indications of toxicity. Together with previous reports showing the cytoprotective effects of TBE-31 in animal models of carcinogenesis, our results demonstrate the high potency, efficacy and suitability for chronic administration of cysteine targeting reversible covalent drugs.


Scientific Reports | 2017

Transcription factors NRF2 and HSF1 have opposing functions in autophagy

Sharadha Dayalan Naidu; Dina Dikovskaya; Egle Gaurilcikaite; Elena V. Knatko; Zachary R. Healy; Hema Mohan; Glenn Koh; Axel Laurell; Graeme Ball; David Olagnier; Laureano de la Vega; Ian G. Ganley; Paul Talalay; Albena T. Dinkova-Kostova

Autophagy plays a critical role in the maintenance of cellular homeostasis by degrading proteins, lipids and organelles. Autophagy is activated in response to stress, but its regulation in the context of other stress response pathways, such as those mediated by heat shock factor 1 (HSF1) and nuclear factor-erythroid 2 p45-related factor 2 (NRF2), is not well understood. We found that the Michael acceptor bis(2-hydoxybenzylidene)acetone (HBB2), a dual activator of NRF2 and HSF1, protects against the development of UV irradiation-mediated cutaneous squamous cell carcinoma in mice. We further show that HBB2 is an inducer of autophagy. In cells, HBB2 increases the levels of the autophagy-cargo protein p62/sequestosome 1, and the lipidated form of microtubule-associated protein light chain 3 isoform B. Activation of autophagy by HBB2 is impaired in NRF2-deficient cells, which have reduced autophagic flux and low basal and induced levels of p62. Conversely, HSF1-deficient cells have increased autophagic flux under both basal as well as HBB2-induced conditions, accompanied by increased p62 levels. Our findings suggest that NRF2 and HSF1 have opposing roles during autophagy, and illustrate the existence of tight mechanistic links between the cellular stress responses.


Cancer Prevention Research | 2017

Whole-Exome Sequencing Validates a Preclinical Mouse Model for the Prevention and Treatment of Cutaneous Squamous Cell Carcinoma.

Elena V. Knatko; Brandon Praslicka; Maureen Higgins; Alan Evans; Karin J. Purdie; Catherine A. Harwood; Charlotte M. Proby; Aikseng Ooi; Albena T. Dinkova-Kostova

Cutaneous squamous cell carcinomas (cSCC) are among the most common and highly mutated human malignancies. Solar UV radiation is the major factor in the etiology of cSCC. Whole-exome sequencing of 18 microdissected tumor samples (cases) derived from SKH-1 hairless mice that had been chronically exposed to solar-simulated UV (SSUV) radiation showed a median point mutation (SNP) rate of 155 per Mb. The majority (78.6%) of the SNPs are C.G>T.A transitions, a characteristic UVR-induced mutational signature. Direct comparison with human cSCC cases showed high overlap in terms of both frequency and type of SNP mutations. Mutations in Trp53 were detected in 15 of 18 (83%) cases, with 20 of 21 SNP mutations located in the protein DNA-binding domain. Strikingly, multiple nonsynonymous SNP mutations in genes encoding Notch family members (Notch1-4) were present in 10 of 18 (55%) cases. The histopathologic spectrum of the mouse cSCC that develops in this model resembles very closely the spectrum of human cSCC. We conclude that the mouse SSUV cSCCs accurately represent the histopathologic and mutational spectra of the most prevalent tumor suppressors of human cSCC, validating the use of this preclinical model for the prevention and treatment of human cSCC. Cancer Prev Res; 10(1); 67–75. ©2016 AACR.

Collaboration


Dive into the Elena V. Knatko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jed W. Fahey

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Paul Talalay

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge