Elena Veronesi
University of Modena and Reggio Emilia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elena Veronesi.
Cancer Research | 2010
Giulia Grisendi; Rita Bussolari; Luigi Cafarelli; István Peták; Valeria Rasini; Elena Veronesi; Giorgio De Santis; Carlotta Spano; Mara Tagliazzucchi; Helga Barti-Juhasz; Laura Scarabelli; Franco Bambi; Antonio Frassoldati; Giulio Rossi; Christian Casali; Uliano Morandi; Edwin M. Horwitz; Paolo Paolucci; Pierfranco Conte; Massimo Dominici
Adipose-derived mesenchymal stromal/stem cells (AD-MSC) may offer efficient tools for cell-based gene therapy approaches. In this study, we evaluated whether AD-MSC could deliver proapoptotic molecules for cancer treatment. Human AD-MSCs were isolated and transduced with a retroviral vector encoding full-length human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a proapoptotic ligand that induces apoptosis in a variety of human cancers but not normal tissues. Although several studies have documented the antitumor activity of recombinant human TRAIL, its use in vivo is limited by a short half-life in plasma due to a rapid clearance by the kidney. We found that these limitations can be overcome using stably transduced AD-MSC, which could serve as a constant source of TRAIL production. AD-MSC armed with TRAIL targeted a variety of tumor cell lines in vitro, including human cervical carcinoma, pancreatic cancer, colon cancer, and, in combination with bortezomib, TRAIL-resistant breast cancer cells. Killing activity was associated with activation of caspase-8 as expected. When injected i.v. or s.c. into mice, AD-MSC armed with TRAIL localized into tumors and mediated apoptosis without significant apparent toxicities to normal tissues. Collectively, our results provide preclinical support for a model of TRAIL-based cancer therapy relying on the use of adipose-derived mesenchymal progenitors as cellular vectors.
Blood | 2009
Massimo Dominici; Valeria Rasini; Rita Bussolari; Xiaohua Chen; Ted J. Hofmann; Carlotta Spano; Daniela Bernabei; Elena Veronesi; Filippo Bertoni; Paolo Paolucci; Pierfranco Conte; Edwin M. Horwitz
Adequate recovery of hematopoietic stem cell (HSC) niches after cytotoxic conditioning regimens is essential to successful bone marrow transplantation. Yet, very little is known about the mechanisms that drive the restoration of these niches after bone marrow injury. Here we describe a profound disruption of the marrow microenvironment after lethal total body irradiation of mice that leads to the generation of osteoblasts restoring the HSC niche, followed by a transient, reversible expansion of this niche. Within 48 hours after irradiation, surviving host megakaryocytes were observed close to the endosteal surface of trabecular bone rather than in their normal parasinusoidal site concomitant with an increased stromal-derived factor-1 level. A subsequent increase in 2 megakaryocyte-derived growth factors, platelet-derived growth factor-beta and basic fibroblast growth factor, induces a 2-fold expansion of the population of N-cadherin-/osteopontin-positive osteoblasts, relative to the homeostatic osteoblast population, and hence, increases the number of potential niches for HSC engraftment. After donor cell engraftment, this expanded microenvironment reverts to its homeostatic state. Our results demonstrate the rapid recovery of osteoblastic stem cell niches after marrow radioablation, provide critical insights into the associated mechanisms, and suggest novel means to manipulate the bone marrow microenvironment to promote HSC engraftment.
Blood | 2012
Satoru Otsuru; Patricia L. Gordon; Kengo Shimono; Reena Jethva; Roberta Marino; Charlotte L. Phillips; Ted J. Hofmann; Elena Veronesi; Massimo Dominici; Masahiro Iwamoto; Edwin M. Horwitz
Transplantation of whole bone marrow (BMT) as well as ex vivo-expanded mesenchymal stromal cells (MSCs) leads to striking clinical benefits in children with osteogenesis imperfecta (OI); however, the underlying mechanism of these cell therapies has not been elucidated. Here, we show that non-(plastic)-adherent bone marrow cells (NABMCs) are more potent osteoprogenitors than MSCs in mice. Translating these findings to the clinic, a T cell-depleted marrow mononuclear cell boost (> 99.99% NABMC) given to children with OI who had previously undergone BMT resulted in marked growth acceleration in a subset of patients, unambiguously indicating the therapeutic potential of bone marrow cells for these patients. Then, in a murine model of OI, we demonstrated that as the donor NABMCs differentiate to osteoblasts, they contribute normal collagen to the bone matrix. In contrast, MSCs do not substantially engraft in bone, but secrete a soluble mediator that indirectly stimulates growth, data which provide the underlying mechanism of our prior clinical trial of MSC therapy for children with OI. Collectively, our data indicate that both NABMCs and MSCs constitute effective cell therapy for OI, but exert their clinical impact by different, complementary mechanisms. The study is registered at www.clinicaltrials.gov as NCT00187018.
Cytotherapy | 2010
Giulia Grisendi; Cecilia Annerén; Luigi Cafarelli; Rita Sternieri; Elena Veronesi; Gian Luca Cervo; Stefano Luminari; Michela Maur; Antonio Frassoldati; Giovanni Palazzi; Satoru Otsuru; Franco Bambi; Paolo Paolucci; Conte Pierfranco; Edwin M. Horwitz; Massimo Dominici
BACKGROUND AIMS Bone marrow (BM) mesenchymal stromal/stem cells (MSC) are therapeutic tools in regenerative medicine and oncology. MSC isolation is often performed starting from a separation step based on research-grade 1.077 g/mL density gradient media (DGM). However, MSC clinical application should require the introduction of good manufacturing practice (GMP) reagents. We took advantage of two novel GMP DGM with densities of 1.077 and 1.073 g/mL (Ficoll-Paque PREMIUM and Ficoll-Paque PREMIUM 1.073, respectively) to test whether these reagents could isolate MSC efficiently while simultaneously comparing their performance. METHODS BM samples were processed using either 1.077 or 1.073 g/mL GMP DGM. BM mononucleated cell (MNC) fractions were analyzed for viability, immunophenotype, clonogenic potential, ex vivo expansion and differentiation potential. RESULTS No differences were noticed in cell recovery and viability between the groups. Fluorescence-activated cell-sorting (FACS) analyzes on freshly isolated cells indicated that the 1.073 g/mL GMP DGM more efficiently depleted the CD45(+) fraction in comparison with 1.077 GMP DGM. Moreover, in the 1.073 group, fibroblastic colony-forming units (CFU-F) were 1.5 times higher and the final MSC yield 1.8 times increased after four passages. Both reagents isolated MSC with the expected phenotype; however, 1.073-isolated MSC showed a higher expression of CD90, CD146 and GD2. Additionally, MSC from both groups were capable of fully differentiating into bone, adipose cells and cartilage. CONCLUSIONS Both GMP DGM enriched MSC from BM samples, suggesting that these reagents would be suitable for clinical-grade expansions. In addition, the density of 1.073 g/mL provides a significant advantage over 1.077 g/mL GMP DGM, impacting the quantity of MSC obtained and reducing the ex vivo expansion time for optimized cell-based clinical applications.
BioMed Research International | 2013
Filippo Rossignoli; Anna Caselli; Giulia Grisendi; Serena Piccinno; Jorge S. Burns; Alba Murgia; Elena Veronesi; Pietro Loschi; Cristina Masini; Pierfranco Conte; Paolo Paolucci; Edwin M. Horwiz; Massimo Dominici
Mesenchymal stromal/stem cells (MSCs) reveal progenitor cells-like features including proliferation and differentiation capacities. One of the most historically recognized sources of MSC has been the bone marrow, while other sources recently include adipose tissue, teeth, bone, muscle, placenta, liver, pancreas, umbilical cord, and cord blood. Frequently, progenitor isolation requires traumatic procedures that are poorly feasible and associated with patient discomfort. In the attempt to identify a more approachable MSC source, we focused on endometrial decidual tissue (EDT) found within menstrual blood. Based also on recent literature findings, we hypothesized that EDT may contain heterogeneous populations including some having MSC-like features. Thus, we here sought to isolate EDT-MSC processing menstrual samples from multiple donors. Cytofluorimetric analyses revealed that resulting adherent cells were expressing mesenchymal surface markers, including CD56, CD73, CD90, CD105 and CD146, and pluripotency markers such as SSEA-4. Moreover, EDT-MSC showed a robust clonogenic potential and could be largely expanded in vitro as fibroblastoid elements. In addition, differentiation assays drove these cells towards osteogenic, adipogenic, and chondrogenic lineages. Finally, for the first time, we were able to gene modify these progenitors by a retroviral vector carrying the green fluorescent protein. From these data, we suggest that EDT-MSC could represent a new promising tool having potential within cell and gene therapy applications.
Advances in Biochemical Engineering \/ Biotechnology | 2012
Naomi D’souza; Jorge S. Burns; Giulia Grisendi; Olivia Candini; Elena Veronesi; Serena Piccinno; Edwin M. Horwitz; Paolo Paolucci; Pierfranco Conte; Massimo Dominici
: Mesenchymal stromal/stem cells (MSC) are adult multipotent progenitors with fibroblast-like morphology able to differentiate into adipocytic, osteogenic, chondrogenic, and myogenic lineages. Due to these properties, MSC have been studied and introduced as therapeutics in regenerative medicine. Preliminary studies have also shown a possible involvement of MSC as precursors of cellular elements within tumor microenvironments, in particular tumor-associated fibroblasts (TAF). Among a number of different possible origins, TAF may originate from a pool of circulating progenitors from bone marrow or adipose tissue-derived MSC. There is growing evidence to corroborate that cells immunophenotypically defined as MSC are able to reside as TAF influencing the tumor microenvironment in a potentially bi-phasic and obscure manner: either promoting or inhibiting growth depending on tumor context and MSC sources. Here we focus on relationships between the tumor microenvironment, cancer cells, and MSC, analyzing their diverse ability to influence neoplastic development. Associated activities include MSC homing driven by the secretion of various mediators, differentiation towards TAF phenotypes, and reciprocal interactions with the tumor cells. These are reviewed here with the aim of understanding the biological functions of MSC that can be exploited for innovative cancer therapy.
Stem Cells | 2015
Olivia Candini; Carlotta Spano; Alba Murgia; Giulia Grisendi; Elena Veronesi; Maria Serena Piccinno; Manuela Ferracin; Massimo Negrini; Francesca Giacobbi; Franco Bambi; Edwin M. Horwitz; Pierfranco Conte; Paolo Paolucci; Massimo Dominici
Human aging is associated with a decrease in tissue functions combined with a decline in stem cells frequency and activity followed by a loss of regenerative capacity. The molecular mechanisms behind this senescence remain largely obscure, precluding targeted approaches to counteract aging. Focusing on mesenchymal stromal/stem cells (MSC) as known adult progenitors, we identified a specific switch in miRNA expression during aging, revealing a miR‐196a upregulation which was inversely correlated with MSC proliferation through HOXB7 targeting. A forced HOXB7 expression was associated with an improved cell growth, a reduction of senescence, and an improved osteogenesis linked to a dramatic increase of autocrine basic fibroblast growth factor secretion. These findings, along with the progressive decrease of HOXB7 levels observed during skeletal aging in mice, indicate HOXB7 as a master factor driving progenitors behavior lifetime, providing a better understanding of bone senescence and leading to an optimization of MSC performance. Stem Cells 2015;33:939–950
Journal of Stem Cell Research & Therapy | 2017
Cecilie Gudveig Gjerde; Daniele De Santis; Massimo Dominici; Zanotti Guglielmo; Hellem Sølve; Maria Serena Piccinno; Jorge S. Burns; Alba Murgia; Olivia Candini; Krampera Mauro; Nocini Pierfrancesco; Addis Alessandro; Amiaud Jérôme; Layrolle Pierre; Mustafa Kamal; Elena Veronesi
Regeneration of atrophied alveolar bone prior to insertion of dental implants is a major challenge for oral and maxillofacial surgery. It has been reported that Bone Marrow (BM) derived Mesenchymal Stromal Cells (MSC) retain therapeutic potential for bone regeneration. In the present study, a preclinical mini-pig model simulating the clinical setting was established in order to evaluate the efficacy of autologous MSC for mandible regeneration. Under general anaesthesia, BM aspirates were collected from tibia of mini-pigs (n = 5) and MSC were isolated, characterized and expanded. At the same time, a narrow alveolar ridge was simultaneously created by bilateral extraction of two premolar teeth and removal of the buccal bone in order to simulate the pathological situation in humans. After ex vivo expansion, cells were delivered fresh to the surgical operating room and seeded on Biphasic Calcium Phosphate (BCP) granules for 1 hour followed by implantation into the simulated alveolar defects in one pig. The surgical defects were closed with sutures and left to heal for eight weeks. A bone biopsy was taken and dental implants were placed in the newly formed bone. The bone biopsy taken during the procedure showed mineralized bone containing substantial amount of new bone with BCP granules embedded in osteoid tissues and dispersed throughout the newly formed bone matrix. The data demonstrate the osteogenic potential of autologous MSC combined with BCP, providing crucial pre-clinical information in a large animal aimed at the reconstruction of resorbed alveolar bone.
Molecular Therapy | 2013
Ted J. Hofmann; Satoru Otsuru; Roberta Marino; Valeria Rasini; Elena Veronesi; Alba Murgia; Jill M. Lahti; Kelli L. Boyd; Massimo Dominici; Edwin M. Horwitz
Bone marrow transplantation (BMT) can give rise to donor-derived osteopoiesis in mice and humans; however, the source of this activity, whether a primitive osteoprogenitor or a transplantable marrow cell with dual hematopoietic and osteogenic potential, has eluded detection. To address this issue, we fractionated whole BM from mice according to cell surface immunophenotype and assayed the hematopoietic and osteopoietic potentials of the transplanted cells. Here, we show that a donor marrow cell capable of robust osteopoiesis possesses a surface phenotype of c-Kit(+) Lin(-) Sca-1(+) CD34(-/lo), identical to that of the long-term repopulating hematopoietic stem cell (LTR-HSC). Secondary BMT studies demonstrated that a single marrow cell able to contribute to hematopoietic reconstitution in primary recipients also drives robust osteopoiesis and LT hematopoiesis in secondary recipients. These findings indicate that LTR-HSC can give rise to progeny that differentiate to osteoblasts after BMT, suggesting a mechanism for prompt restoration of the osteoblastic HSC niche following BM injury, such as that induced by clinical BMT preparative regimens. An understanding of the mechanisms that regulate this differentiation potential may lead to novel treatments for disorders of bone as well as methods for preserving the integrity of endosteal hematopoietic niches.
Stem Cells | 2015
Giulia Grisendi; Carlotta Spano; Naomi D'souza; Valeria Rasini; Elena Veronesi; Malvina Prapa; Tiziana Petrachi; Serena Piccinno; Filippo Rossignoli; Jorge S. Burns; Stefania Fiorcari; Donatella Granchi; Nicola Baldini; Edwin M. Horwitz; Valentina Guarneri; Pierfranco Conte; Paolo Paolucci; Massimo Dominici
Sarcomas are frequent tumors in children and young adults that, despite a relative chemo‐sensitivity, show high relapse rates with up to 80% of metastatic patients dying in 5 years from diagnosis. The real ontogeny of sarcomas is still debated and evidences suggest they may derive from precursors identified within mesenchymal stromal/stem cells (MSC) fractions. Recent studies on sarcoma microenvironment additionally indicated that MSC could take active part in generation of a supportive stroma. Based on this knowledge, we conceived to use modified MSC to deliver tumor necrosis factor‐related apoptosis‐inducing ligand (TRAIL) targeting different sarcoma histotypes. Gene modified MSC expressing TRAIL were cocultured with different osteosarcoma, rhabdomyosarcoma, and Ewings Sarcoma (ES) cell lines assessing viability and caspase‐8 activation. An in vivo model focused on ES was then implemented considering the impact of MSC‐TRAIL on tumor size, apoptosis, and angiogenesis. MSC expressing TRAIL induced significantly high apoptosis in all tested lines. Sarcoma death was specifically associated with caspase‐8 activation starting from 8 hours of coculture with MSC‐TRAIL. When injected into pre‐established ES xenotransplants, MSC‐TRAIL persisted within its stroma, causing significant tumor apoptosis versus control groups. Additional histological and in vitro studies reveal that MSC‐TRAIL could also exert potent antiangiogenic functions. Our results suggest that MSC as TRAIL vehicles could open novel therapeutic opportunities for sarcoma by multiple mechanisms. Stem Cells 2015;33:859–869