Elena Vlasenko
Novozymes
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elena Vlasenko.
Biochemistry | 2010
Paul Harris; Ditte Welner; Keith Mcfarland; Edward Re; Jens-Christian Navarro Poulsen; Kimberly Brown; Rune Salbo; Hanshu Ding; Elena Vlasenko; Sandy Merino; Feng Xu; Joel Cherry; Sine Larsen; Leila Lo Leggio
Currently, the relatively high cost of enzymes such as glycoside hydrolases that catalyze cellulose hydrolysis represents a barrier to commercialization of a biorefinery capable of producing renewable transportable fuels such as ethanol from abundant lignocellulosic biomass. Among the many families of glycoside hydrolases that catalyze cellulose and hemicellulose hydrolysis, few are more enigmatic than family 61 (GH61), originally classified based on measurement of very weak endo-1,4-beta-d-glucanase activity in one family member. Here we show that certain GH61 proteins lack measurable hydrolytic activity by themselves but in the presence of various divalent metal ions can significantly reduce the total protein loading required to hydrolyze lignocellulosic biomass. We also solved the structure of one highly active GH61 protein and find that it is devoid of conserved, closely juxtaposed acidic side chains that could serve as general proton donor and nucleophile/base in a canonical hydrolytic reaction, and we conclude that the GH61 proteins are unlikely to be glycoside hydrolases. Structure-based mutagenesis shows the importance of several conserved residues for GH61 function. By incorporating the gene for one GH61 protein into a commercial Trichoderma reesei strain producing high levels of cellulolytic enzymes, we are able to reduce by 2-fold the total protein loading (and hence the cost) required to hydrolyze lignocellulosic biomass.
Applied and Environmental Microbiology | 2011
James Langston; Tarana Shaghasi; Eric Abbate; Feng Xu; Elena Vlasenko; Matt Sweeney
ABSTRACT Several members of the glycoside hydrolase 61 (GH61) family of proteins have recently been shown to dramatically increase the breakdown of lignocellulosic biomass by microbial hydrolytic cellulases. However, purified GH61 proteins have neither demonstrable direct hydrolase activity on various polysaccharide or lignacious components of biomass nor an apparent hydrolase active site. Cellobiose dehydrogenase (CDH) is a secreted flavocytochrome produced by many cellulose-degrading fungi with no well-understood biological function. Here we demonstrate that the binary combination of Thermoascus aurantiacus GH61A (TaGH61A) and Humicola insolens CDH (HiCDH) cleaves cellulose into soluble, oxidized oligosaccharides. TaGH61A-HiCDH activity on cellulose is shown to be nonredundant with the activities of canonical endocellulase and exocellulase enzymes in microcrystalline cellulose cleavage, and while the combination of TaGH61A and HiCDH cleaves highly crystalline bacterial cellulose, it does not cleave soluble cellodextrins. GH61 and CDH proteins are coexpressed and secreted by the thermophilic ascomycete Thielavia terrestris in response to environmental cellulose, and the combined activities of T. terrestris GH61 and T. terrestris CDH are shown to synergize with T. terrestris cellulose hydrolases in the breakdown of cellulose. The action of GH61 and CDH on cellulose may constitute an important, but overlooked, biological oxidoreductive system that functions in microbial lignocellulose degradation and has applications in industrial biomass utilization.
Bioresource Technology | 2010
Elena Vlasenko; M. Schülein; Joel Cherry; Feng Xu
Archive | 2005
Elena Vlasenko; Joel Cherry; Feng Xu
Archive | 2010
Brett Mcbrayer; Tarana Shaghasi; Elena Vlasenko
Archive | 2010
Elena Vlasenko; Brett Mcbrayer; Dominique Aubert Skovlund; Sara Landvik
Archive | 2009
Matthew Sweeney; Elena Vlasenko; Eric Abbate
Archive | 2008
Kimberly Brown; Paul Harris; Elizabeth Zaretsky; Edward Re; Elena Vlasenko; Keith Mcfarland; Alfredo Lopez de Leon
Archive | 2009
Matthew Sweeney; Elena Vlasenko
Archive | 2012
Kimberly Brown; Paul Harris; Elizabeth Zaretsky; Edward Re; Elena Vlasenko; Keith Mcfarland; Alfredo Lopez de Leon