Eleni A. Spyropoulou
University of Amsterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eleni A. Spyropoulou.
Plant Physiology | 2011
Vasiliki Falara; Tariq A. Akhtar; Thuong T.H. Nguyen; Eleni A. Spyropoulou; Petra M. Bleeker; Ines Schauvinhold; Yuki Matsuba; Megan E. Bonini; Anthony L. Schilmiller; Robert C. Schuurink; Eran Pichersky
Compounds of the terpenoid class play numerous roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of cultivated tomato (Solanum lycopersicum) contains 44 terpene synthase (TPS) genes, including 29 that are functional or potentially functional. Of these 29 TPS genes, 26 were expressed in at least some organs or tissues of the plant. The enzymatic functions of eight of the TPS proteins were previously reported, and here we report the specific in vitro catalytic activity of 10 additional tomato terpene synthases. Many of the tomato TPS genes are found in clusters, notably on chromosomes 1, 2, 6, 8, and 10. All TPS family clades previously identified in angiosperms are also present in tomato. The largest clade of functional TPS genes found in tomato, with 12 members, is the TPS-a clade, and it appears to encode only sesquiterpene synthases, one of which is localized to the mitochondria, while the rest are likely cytosolic. A few additional sesquiterpene synthases are encoded by TPS-b clade genes. Some of the tomato sesquiterpene synthases use z,z-farnesyl diphosphate in vitro as well, or more efficiently than, the e,e-farnesyl diphosphate substrate. Genes encoding monoterpene synthases are also prevalent, and they fall into three clades: TPS-b, TPS-g, and TPS-e/f. With the exception of two enzymes involved in the synthesis of ent-kaurene, the precursor of gibberellins, no other tomato TPS genes could be demonstrated to encode diterpene synthases so far.
Plant Molecular Biology | 2011
Petra M. Bleeker; Eleni A. Spyropoulou; Paul J. Diergaarde; Hanne Volpin; Michiel de Both; Philipp Zerbe; Joerg Bohlmann; Vasiliki Falara; Yuki Matsuba; Eran Pichersky; Michel A. Haring; Robert C. Schuurink
Solanum lycopersicum and Solanum habrochaites (f. typicum) accession PI127826 emit a variety of sesquiterpenes. To identify terpene synthases involved in the production of these volatile sesquiterpenes, we used massive parallel pyrosequencing (RNA-seq) to obtain the transcriptome of the stem trichomes from these plants. This approach resulted initially in the discovery of six sesquiterpene synthase cDNAs from S. lycopersicum and five from S. habrochaites. Searches of other databases and the S. lycopersicum genome resulted in the discovery of two additional sesquiterpene synthases expressed in trichomes. The sesquiterpene synthases from S. lycopersicum and S. habrochaites have high levels of protein identity. Several of them appeared to encode for non-functional proteins. Functional recombinant proteins produced germacrenes, β-caryophyllene/α-humulene, viridiflorene and valencene from (E,E)-farnesyl diphosphate. However, the activities of these enzymes do not completely explain the differences in sesquiterpene production between the two tomato plants. RT-qPCR confirmed high levels of expression of most of the S. lycopersicum sesquiterpene synthases in stem trichomes. In addition, one sesquiterpene synthase was induced by jasmonic acid, while another appeared to be slightly repressed by the treatment. Our data provide a foundation to study the evolution of terpene synthases in cultivated and wild tomato.
BMC Genomics | 2014
Eleni A. Spyropoulou; Michel A. Haring; Robert C. Schuurink
BackgroundGlandular trichomes are production and storage organs of specialized metabolites such as terpenes, which play a role in the plant’s defense system. The present study aimed to shed light on the regulation of terpene biosynthesis in Solanum lycopersicum trichomes by identification of transcription factors (TFs) that control the expression of terpene synthases.ResultsA trichome transcriptome database was created with a total of 27,195 contigs that contained 743 annotated TFs. Furthermore a quantitative expression database was obtained of jasmonic acid-treated trichomes. Sixteen candidate TFs were selected for further analysis. One TF of the MYC bHLH class and one of the WRKY class were able to transiently transactivate S. lycopersicum terpene synthase promoters in Nicotiana benthamiana leaves. Strikingly, SlMYC1 was shown to act synergistically with a previously identified zinc finger-like TF, Expression of Terpenoids 1 (SlEOT1) in transactivating the SlTPS5 promoter.ConclusionsHigh-throughput sequencing of tomato stem trichomes led to the discovery of two transcription factors that activated several terpene synthase promoters. Our results identified new elements of the transcriptional regulation of tomato terpene biosynthesis in trichomes, a largely unexplored field.
Plant Journal | 2015
Rossana Mirabella; Han Rauwerda; Silke Allmann; Alessandra Scala; Eleni A. Spyropoulou; Michel de Vries; Maaike R. Boersma; Timo M. Breit; Michel A. Haring; Robert C. Schuurink
Plants are known to be responsive to volatiles, but knowledge about the molecular players involved in transducing their perception remains scarce. We study the response of Arabidopsis thaliana to E-2-hexenal, one of the green leaf volatiles (GLV) that is produced upon wounding, herbivory or infection with pathogens. We have taken a transcriptomics approach to identify genes that are induced by E-2-hexenal, but not by defence hormones or other GLVs. Furthermore, by studying the promoters of early E-2-hexenal-induced genes we determined that the only statistically enriched cis-element was the W-box motif. Since members of the plant-specific family of WRKY transcription factors act in trans on this cis-element, we focused on WRKY6, 40 and 53 that were most strongly induced by E-2-hexenal. Root elongation of Arabidopsis seedlings of the wrky40 wrky6 double mutant was much less inhibited than in wt plants, similar to the E-2-hexenal-responsive mutant her1, which is perturbed in γ-amino butyric acid (GABA) metabolism. The induction of several of the E-2-hexenal-specific genes was much higher in the wrky40, wrky6 or wrky40 wrky6 mutants, including GAD4, a glutamate decarboxylase that catalyzes the formation of GABA from glutamate. In conclusion, WRKY6 and 40 seem to act as important players transducing E-2-hexenal perception.
Methods in Enzymology | 2016
R.W.J. Kortbeek; J. Xu; A.M. Ramirez; Eleni A. Spyropoulou; Paul J. Diergaarde; I. Otten-Bruggeman; M.T.J. de Both; R. Nagel; A. Schmidt; Robert C. Schuurink; Petra M. Bleeker
Glandular trichomes are specialized tissues on the epidermis of many plant species. On tomato they synthesize, store, and emit a variety of metabolites such as terpenoids, which play a role in the interaction with insects. Glandular trichomes are excellent tissues for studying the biosynthesis of specialized plant metabolites and are especially suitable targets for metabolic engineering. Here we describe the strategy for engineering tomato glandular trichomes, first with a transient expression system to provide proof of trichome specificity of selected promoters. Using microparticle bombardment, the trichome specificity of a terpene-synthase promoter could be validated in a relatively fast way. Second, we describe a method for stable expression of genes of interest in trichomes. Trichome-specific expression of another terpene-synthase promoter driving the yellow-fluorescence protein-gene is presented. Finally, we describe a case of the overexpression of farnesyl diphosphate synthase (FPS), specifically in tomato glandular trichomes, providing an important precursor in the biosynthetic pathway of sesquiterpenoids. FPS was targeted to the plastid aiming to engineer sesquiterpenoid production, but interestingly leading to a loss of monoterpenoid production in the transgenic tomato trichomes. With this example we show that trichomes are amenable to engineering though, even with knowledge of a biochemical pathway, the result of such engineering can be unexpected.
Frontiers in Plant Science | 2017
Eleni A. Spyropoulou; Henk L. Dekker; Luuk Steemers; Jan H. van Maarseveen; Chris G. de Koster; Michel A. Haring; Robert C. Schuurink; Silke Allmann
E-2-hexenal is a volatile compound that is commonly emitted by wounded or stressed plants. It belongs to the group of so-called green leaf volatiles (GLVs), which play an important role in transferring information to plants and insects. While most biosynthetic enzymes upstream of E-2-hexenal have been studied extensively, much less is known about the enzyme responsible for the conversion from Z-3- to E-2-hexenal. In this study we have identified two (3Z):(2E)-hexenal isomerases (HIs) from cucumber fruits by classical biochemical fractionation techniques and we were able to confirm their activity by heterologous expression. Recombinant protein of the HIs did not only convert the leaf aldehyde Z-3-hexenal to E-2-hexenal, but also (Z,Z)-3,6-nonadienal to (E,Z)-2,6-nonadienal, these last two representing major flavor volatiles of cucumber fruits. Transient expression of the cucumber HIs in Nicotiana benthamiana leaves drastically changed the GLV bouquet of damaged plants from a Z-3- to an E-2-enriched GLV profile. Furthermore, transcriptional analysis revealed that the two HIs showed distinct expression patterns. While HI-1 was specifically expressed in the flesh of cucumber fruits HI-2 was expressed in leaves as well. Interestingly, wounding of cucumber leaves caused only a slight increase in HI-2 transcript levels. These results demonstrate that cucumber HIs are responsible for the rearrangement of Z-3-aldehydes in both leaves and fruits. Future research will reveal the physiological importance of an increased conversion to E-2-aldehydes for plants and insects.
Signaling and communication in plants | 2012
Juan M. Alba; Silke Allmann; Joris J. Glas; Bernardus C. J. Schimmel; Eleni A. Spyropoulou; Marije Stoops; Carlos A. Villarroel; Merijn R. Kant
Plants release volatiles into the air. Upon herbivory, the amounts they release from the vegetative tissues increases dramatically. Although the physiological necessity for this increased emission is not fully understood, it has interesting consequences, the most important one being that foraging predators and host-searching parasitoids use these signals to track down plants with prey. This process is referred to as “indirect defense” since these responses can augment the plant’s own “direct” defenses, such as structural barriers and toxins, when they result in decreased herbivory via increased predation. Here we will describe how plants organize indirect defenses and how herbivores have adapted to interfere with these processes.
Plant Molecular Biology | 2014
Eleni A. Spyropoulou; Michel A. Haring; Robert C. Schuurink
Archive | 2012
Robert C. Schuurink; Michael Albertus Haring; Eleni A. Spyropoulou
Planta Medica | 2013
P Bleeker; Eleni A. Spyropoulou; Maaike R. Boersma; Nf Shaipulah; Alessandra Scala; Silke Allmann; M de Vries; Michel A. Haring; Robert C. Schuurink