Eleni Vryonidou
Université catholique de Louvain
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eleni Vryonidou.
Physics Letters B | 2014
Rikkert Frederix; Stefano Frixione; Valentin Hirschi; Fabio Maltoni; Olivier Mattelaer; Paolo Torrielli; Eleni Vryonidou; Marco Zaro
We present predictions for the SM-Higgs-pair production channels of relevance at the LHC: gluon–gluon fusion, VBF, and top-pair, W, Z and single-top associated production. All these results are at the NLO accuracy in QCD, and matched to parton showers by means of the MC@NLO method; hence, they are fully differential. With the exception of the gluon–gluon fusion process, for which a special treatment is needed in order to improve upon the infinite-top-mass limit, our predictions are obtained in a fully automatic way within the publicly available MadGraph5_aMC@NLO framework. We show that for all channels in general, and for gluon–gluon fusion and top-pair associated production in particular, NLO corrections reduce the theoretical uncertainties, and are needed in order to arrive at reliable predictions for total rates as well as for distributions.
Journal of High Energy Physics | 2014
Fabio Maltoni; Eleni Vryonidou; Marco Zaro
A bstractThe observation of double and triple scalar boson production at hadron colliders could provide key information on the Higgs self couplings and the potential. As for single Higgs production the largest rates for multiple Higgs production come from gluon gluon fusion processes mediated by a top-quark loop. However, at variance with single Higgs production, top-quark mass and width effects from the loops cannot be neglected. Computations including the exact top-quark mass dependence are only available at the leading order, and currently predictions at higher orders are obtained by means of approximations based on the Higgs-gluon effective field theory (HEFT). In this work we present a reweighting technique that, starting from events obtained via the MC@NLO method in the HEFT, allows to exactly include the top-quark mass and width effects coming from one- and two-loop amplitudes. We describe our approach and apply it to double Higgs production at NLO in QCD, computing the needed one-loop amplitudes and using approximations for the unknown two-loop ones. The results are compared to other approaches used in the literature, arguing that they provide more accurate predictions for distributions and for total rates as well. As a novel application of our procedure we present predictions at NLO in QCD for triple Higgs production at hadron colliders.
Journal of High Energy Physics | 2014
Benoît Hespel; David Lopez-Val; Eleni Vryonidou
A bstractWe study the production of Higgs boson pairs via gluon fusion at the LHC in the Two-Higgs-Doublet Model. We present predictions at NLO accuracy in QCD, matched to parton showers through the MC@NLO method. A dedicated reweighting technique is used to improve the NLO calculation upon the infinite top-mass limit. We perform our calculation within the MadGraph5 aMC@NLO framework, along with the 2HDM implementation based on the NLOCT package. The inclusion of the NLO corrections leads to large K-factors and significantly reduced theoretical uncertainties. We examine the seven 2HDM Higgs pair combinations using a number of representative 2HDM scenarios. We show how the model-specific features modify the Higgs pair total rates and distribution shapes, leading to trademark signatures of an extended Higgs sector.
Journal of High Energy Physics | 2016
Olga Bessidskaia Bylund; Fabio Maltoni; Ioannis Tsinikos; Eleni Vryonidou; Cen Zhang
A bstractTop quark pair production in association with a Z-boson or a photon at the LHC directly probes neutral top-quark couplings. We present predictions for these two processes in the Standard Model (SM) Effective Field Theory (EFT) at next-to-leading order (NLO) in QCD. We include the full set of CP-even dimension-six operators that enter the top-quark interactions with the SM gauge bosons. For comparison, we also present predictions in the SMEFT for top loop-induced HZ production at the LHC and for tt¯
Journal of High Energy Physics | 2016
Chiara Arina; Mihailo Backović; E. Conte; Benjamin Fuks; Jun Guo; Jan Heisig; Benoît Hespel; Michael Krämer; Fabio Maltoni; Antony Martini; Kentarou Mawatari; Mathieu Pellen; Eleni Vryonidou
European Physical Journal C | 2015
Olivier Mattelaer; Eleni Vryonidou
t\overline{t}
Journal of High Energy Physics | 2016
Fabio Maltoni; Eleni Vryonidou; Cen Zhang
Journal of High Energy Physics | 2015
Benoît Hespel; Fabio Maltoni; Eleni Vryonidou
production at the ILC at NLO in QCD. Results for total cross sections and differential distributions are obtained and uncertainties coming from missing higher orders in the strong coupling and in the EFT expansions are discussed. NLO results matched to the parton shower are available, allowing for event generation to be directly employed in an experimental analyses. Our framework provides a solid basis for the interpretation of current and future measurements in the SMEFT, with improved accuracy and precision.
Journal of High Energy Physics | 2016
Benoît Hespel; Fabio Maltoni; Eleni Vryonidou
A bstractStudies of dark matter lie at the interface of collider physics, astrophysics and cosmology. Constraining models featuring dark matter candidates entails the capability to provide accurate predictions for large sets of observables and compare them to a wide spectrum of data. We present a framework which, starting from a model Lagrangian, allows one to consistently and systematically make predictions, as well as to confront those predictions with a multitude of experimental results. As an application, we consider a class of simplified dark matter models where a scalar mediator couples only to the top quark and a fermionic dark sector (i.e. the simplified top-philic dark matter model). We study in detail the complementarity of relic density, direct/indirect detection and collider searches in constraining the multi-dimensional model parameter space, and efficiently identify regions where individual approaches to dark matter detection provide the most stringent bounds. In the context of collider studies of dark matter, we point out the complementarity of LHC searches in probing different regions of the model parameter space with final states involving top quarks, photons, jets and/or missing energy. Our study of dark matter production at the LHC goes beyond the tree-level approximation and we show examples of how higher-order corrections to dark matter production processes can affect the interpretation of the experimental results.
Journal of High Energy Physics | 2016
Rikkert Frederix; Stefano Frixione; Eleni Vryonidou; Marius Wiesemann
We show how studies relevant for mono-X searches at the LHC in simplified models featuring a dark-matter candidate and an s-channel mediator can be performed within the MadGraph5_aMC@NLO framework. We focus on gluon-initiated loop-induced processes, mostly relevant to the case where the mediator couples preferentially to third generation quarks and in particular to the top quark. Our implementation allows us to study signatures at hadron colliders involving missing transverse energy plus jets or plus neutral bosons (