Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eleonora Aronica is active.

Publication


Featured researches published by Eleonora Aronica.


Epilepsia | 2011

The clinicopathologic spectrum of focal cortical dysplasias: A consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission†

Ingmar Blümcke; Maria Thom; Eleonora Aronica; Dawna D. Armstrong; Harry V. Vinters; André Palmini; Ts Jacques; Giuliano Avanzini; A. James Barkovich; Giorgio Battaglia; Albert J. Becker; Carlos Cepeda; Fernando Cendes; Nadia Colombo; Peter B. Crino; J. Helen Cross; Olivier Delalande; François Dubeau; John S. Duncan; Renzo Guerrini; Philippe Kahane; Gary W. Mathern; Imad Najm; Cigdem Ozkara; Charles Raybaud; Alfonso Represa; Noriko Salamon; Andreas Schulze-Bonhage; Laura Tassi; Annamaria Vezzani

Purpose:  Focal cortical dysplasias (FCD) are localized regions of malformed cerebral cortex and are very frequently associated with epilepsy in both children and adults. A broad spectrum of histopathology has been included in the diagnosis of FCD. An ILAE task force proposes an international consensus classification system to better characterize specific clinicopathological FCD entities.


Nature Medicine | 2010

Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures

Mattia Maroso; Silvia Balosso; Teresa Ravizza; Jaron Liu; Eleonora Aronica; Anand M. Iyer; Carlo Rossetti; Monica Molteni; Maura Casalgrandi; Angelo A. Manfredi; Marco Bianchi; Annamaria Vezzani

Brain inflammation is a major factor in epilepsy, but the impact of specific inflammatory mediators on neuronal excitability is incompletely understood. Using models of acute and chronic seizures in C57BL/6 mice, we discovered a proconvulsant pathway involving high-mobility group box-1 (HMGB1) release from neurons and glia and its interaction with Toll-like receptor 4 (TLR4), a key receptor of innate immunity. Antagonists of HMGB1 and TLR4 retard seizure precipitation and decrease acute and chronic seizure recurrence. TLR4-defective C3H/HeJ mice are resistant to kainate-induced seizures. The proconvulsant effects of HMGB1, like those of interleukin-1β (IL-1β), are partly mediated by ifenprodil-sensitive N-methyl-d-aspartate (NMDA) receptors. Increased expression of HMGB1 and TLR4 in human epileptogenic tissue, like that observed in the mouse model of chronic seizures, suggests a role for the HMGB1-TLR4 axis in human epilepsy. Thus, HMGB1-TLR4 signaling may contribute to generating and perpetuating seizures in humans and might be targeted to attain anticonvulsant effects in epilepsies that are currently resistant to drugs.


Epilepsia | 2013

International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: A Task Force report from the ILAE Commission on Diagnostic Methods

Ingmar Blümcke; Maria Thom; Eleonora Aronica; Dawna D. Armstrong; Fabrice Bartolomei; Andrea Bernasconi; Neda Bernasconi; Christian G. Bien; Fernando Cendes; Roland Coras; J. Helen Cross; Ts Jacques; Philippe Kahane; Gary W. Mathern; Haijme Miyata; Solomon L. Moshé; Buge Oz; Cigdem Ozkara; Emilio Perucca; Sanjay M. Sisodiya; Samuel Wiebe; Roberto Spreafico

Hippocampal sclerosis (HS) is the most frequent histopathology encountered in patients with drug‐resistant temporal lobe epilepsy (TLE). Over the past decades, various attempts have been made to classify specific patterns of hippocampal neuronal cell loss and correlate subtypes with postsurgical outcome. However, no international consensus about definitions and terminology has been achieved. A task force reviewed previous classification schemes and proposes a system based on semiquantitative hippocampal cell loss patterns that can be applied in any histopathology laboratory. Interobserver and intraobserver agreement studies reached consensus to classify three types in anatomically well‐preserved hippocampal specimens: HS International League Against Epilepsy (ILAE) type 1 refers always to severe neuronal cell loss and gliosis predominantly in CA1 and CA4 regions, compared to CA1 predominant neuronal cell loss and gliosis (HS ILAE type 2), or CA4 predominant neuronal cell loss and gliosis (HS ILAE type 3). Surgical hippocampus specimens obtained from patients with TLE may also show normal content of neurons with reactive gliosis only (no‐HS). HS ILAE type 1 is more often associated with a history of initial precipitating injuries before age 5 years, with early seizure onset, and favorable postsurgical seizure control. CA1 predominant HS ILAE type 2 and CA4 predominant HS ILAE type 3 have been studied less systematically so far, but some reports point to less favorable outcome, and to differences regarding epilepsy history, including age of seizure onset. The proposed international consensus classification will aid in the characterization of specific clinicopathologic syndromes, and explore variability in imaging and electrophysiology findings, and in postsurgical seizure control.


Experimental Neurology | 2013

Epilepsy and brain inflammation

Annamaria Vezzani; Eleonora Aronica; Andrey Mazarati; Quentin J. Pittman

During the last decade, experimental research has demonstrated a prominent role of glial cells, activated in brain by various injuries, in the mechanisms of seizure precipitation and recurrence. In particular, alterations in the phenotype and function of activated astrocytes and microglial cells have been described in experimental and human epileptic tissue, including modifications in potassium and water channels, alterations of glutamine/glutamate cycle, changes in glutamate receptor expression and transporters, release of neuromodulatory molecules (e.g. gliotransmitters, neurotrophic factors), and induction of molecules involved in inflammatory processes (e.g. cytokines, chemokines, prostaglandins, complement factors, cell adhesion molecules) (Seifert et al., 2006; Vezzani et al., 2011; Wetherington et al., 2008). In particular, brain injury or proconvulsant events can activate microglia and astrocytes to release a number of proinflammatory mediators, thus initiating a cascade of inflammatory processes in brain tissue. Proinflammatory molecules can alter neuronal excitability and affect the physiological functions of glia by paracrine or autocrine actions, thus perturbing the glioneuronal communications. In experimental models, these changes contribute to decreasing the threshold to seizures and may compromise neuronal survival (Riazi et al., 2010; Vezzani et al., 2008). In this context, understanding which are the soluble mediators and the molecular mechanisms crucially involved in glio-neuronal interactions is instrumental to shed light on how brain inflammation may contribute to neuronal hyperexcitability in epilepsy. This review will report the clinical observations in drug-resistant human epilepsies and the experimental findings in adult and immature rodents linking brain inflammation to the epileptic process in a causal and reciprocal manner. By confronting the clinical evidence with the experimental findings, we will discuss the role of specific soluble inflammatory mediators in the etiopathogenesis of seizures, reporting evidence for both their acute and long term effects on seizure threshold. The possible contribution of these mediators to co-morbidities often described in epilepsy patients will be also discussed. Finally, we will report on the anti-inflammatory treatments with anticonvulsant actions in experimental models highlighting possible therapeutic options for treating drug-resistant seizures and for prevention of epileptogenesis.


The Journal of Neuroscience | 2006

Potential new antiepileptogenic targets indicated by microarray analysis in a rat model for temporal lobe epilepsy.

Jan A. Gorter; Erwin A. van Vliet; Eleonora Aronica; Timo M. Breit; Han Rauwerda; Fernando H. Lopes da Silva; Wytse J. Wadman

To get insight into the mechanisms that may lead to progression of temporal lobe epilepsy, we investigated gene expression during epileptogenesis in the rat. RNA was obtained from three different brain regions [CA3, entorhinal cortex (EC), and cerebellum (CB)] at three different time points after electrically induced status epilepticus (SE): acute phase [group D (1 d)], latent period [group W (1 week)], and chronic epileptic period [group M (3–4 months)]. A group that was stimulated but that had not experienced SE and later epilepsy was also included (group nS). Gene expression analysis was performed using the Affymetrix Gene Chip System (RAE230A). We used GENMAPP and Gene Ontology to identify global biological trends in gene expression data. The immune response was the most prominent process changed during all three phases of epileptogenesis. Synaptic transmission was a downregulated process during the acute and latent phases. GABA receptor subunits involved in tonic inhibition were persistently downregulated. These changes were observed mostly in both CA3 and EC but not in CB. Rats that were stimulated but that did not develop spontaneous seizures later on had also some changes in gene expression, but this was not reflected in a significant change of a biological process. These data suggest that the targeting of specific genes that are involved in these biological processes may be a promising strategy to slow down or prevent the progression of epilepsy. Especially genes related to the immune response, such as complement factors, interleukins, and genes related to prostaglandin synthesis and coagulation pathway may be interesting targets.


European Journal of Neuroscience | 2000

Upregulation of metabotropic glutamate receptor subtype mGluR3 and mGluR5 in reactive astrocytes in a rat model of mesial temporal lobe epilepsy

Eleonora Aronica; Erwin A. van Vliet; Oleg Mayboroda; Dirk Troost; Fernando H. Lopes da Silva; Jan A. Gorter

Reactive gliosis is a prominent morphological feature of mesial temporal lobe epilepsy. Because astrocytes express glutamate receptors, we examined changes in metabotropic glutamate receptor (mGluR) 2/3, mGluR5 and transforming growth factor (TGF)‐β in glial cells of the hippocampal regions in an experimental rat model of spontaneous seizures. Rats that exhibited behavioural status epilepticus (SE) directly after 1 h of electrical angular bundle stimulation, displayed chronic spontaneous seizures after a latent period of 1–2 weeks as observed using continuous electrographic monitoring. SE resulted in hypertrophy of astrocytes and microglia activation throughout the hippocampus as revealed by immunolabelling studies. A dramatic, seizure intensity‐dependent increase in vimentin immunoreactivity (a marker for reactive astrocytes) was revealed in CA3 and hilar regions where prominent neuronal loss occurs. Increased vimentin labelling was first apparent 24 h after onset of SE and persisted up to 3 months. mGluR2/3 and mGluR5 protein expression increased markedly in glial cells of CA3 and hilus by 1 week after SE, and persisted up to 3 months after SE. Double immunolabelling of brain sections with vimentin confirmed co‐localization with glial fibrillary acidic protein (GFAP), mGluR2/3 and mGluR5 in reactive astrocytes. TGF‐β, a cytokine implicated in mGluR3‐mediated neuroprotection, was also upregulated during the first 3 weeks after SE throughout the hippocampus. This study demonstrates seizure‐induced upregulation of two mGluR subtypes in reactive astrocytes, which − together with the increased production of TGF‐β − may represent a novel mechanism for modulation of glial function and for changes in glial‐neuronal communication in the course of epileptogenesis.


European Journal of Neuroscience | 2003

Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: opposite regulation of glutamate transporter proteins.

Eleonora Aronica; Jan A. Gorter; Helen Ijlst-Keizers; A.J.M. Rozemuller; Bulent Yankaya; Sieger Leenstra; Dirk Troost

We examined the regulation of glutamate transporter protein expression after stimulation with selective metabotropic glutamate receptor (mGluR) agonists in cultured human glial cells. mGluR3 and mGluR5 are expressed in human astrocytes and in human glioma cells in vivo as well as in vitro, as shown by either RT‐PCR or western blot analysis. The selective group I agonist (S)‐3,5‐dihydroxyphenylglycine produced a significant down‐regulation of both GLAST and GLT‐1 protein expression in astrocytes cultured in the presence of growth factors. This condition mimics the morphology of reactive glial cells in vivo including an increased expression of mGluR5 protein (observed in pathological conditions). In contrast, (2S,2′R,3′R)‐2‐(2′,3′‐dicarboxycyclopropyl)glycine, a selective agonist of group II metabotropic glutamate receptors, positively modulates the expression of GLAST and GLT‐1 proteins. A similar opposite effect of (S)‐3,5‐dihydroxyphenylglycine and (2S,2′R,3′R)‐2‐(2′,3′‐dicarboxycyclopropyl)glycine was observed for the expression of EAAT3 protein in U373 glioblastoma cell line. Selective group I and II antagonists prevented these effects. Pharmacological inhibition of mitogen‐activated protein kinase and phosphatidylinositol‐3‐K pathways reduces the induction of GLT‐1 observed in response to the group II metabotropic glutamate receptor agonist (2S,2′R,3′R)‐2‐(2′,3′‐dicarboxycyclopropyl)glycine. Thus, mGluR3 and mGluR5 can critically and differentially modulate the expression of glutamate transporters and may represent interesting pharmacological targets to regulate the extracellular levels of glutamate in pathological conditions.


Annals of Neurology | 2004

mTOR cascade activation distinguishes tubers from focal cortical dysplasia.

Marianna Baybis; Jia Yu; Allana Lee; Jeffrey A. Golden; Howard L. Weiner; Guy M. McKhann; Eleonora Aronica; Peter B. Crino

Balloon cells (BCs) in focal cortical dysplasia (FCD) and giant cells (GCs) in tubers of the tuberous sclerosis complex (TSC) share phenotypic similarities. TSC1 or TSC2 gene mutations in TSC lead to mTOR pathway activation and p70S6kinase (phospho‐S6K) and ribosomal S6 (phospho‐S6) protein phosphorylation. Phospho‐S6K, phospho‐S6, and phospho‐S6K–activated proteins phospho‐STAT3 and phospho‐4EBP1 were detected immunohistochemically in GCs, whereas only phospho‐S6 was observed in BCs. Expression of four candidate gene families (cell signaling, cell adhesion, growth factor/receptor, and transcription factor mRNAs) was assayed in single, microdissected phospho‐S6–immunolabeled BCs and GCs as a strategy to define whether BCs and GCs exhibit differential transcriptional profiles. Among 60 genes, differential expression of 24 mRNAs distinguished BCs from GCs and only 4 genes showed similar expression profiles between BCs and GCs. Tuberin mRNA levels were reduced in GCs from TSC patients with TSC2 gene mutations but were unchanged in BCs. Phospho‐S6K, ‐S6, ‐STAT3, and ‐4EBP1 expression in GCs reflects loss of hamartin‐tuberin–mediated mTOR pathway inhibition. Phospho‐S6 expression alone in BCs does not support mTOR cascade activation in FCD. Differential gene expression profiles in BCs and GCs supports the hypothesis that these cell types derive by distinct pathogenic mechanisms. Ann Neurol 2004


Neurobiology of Disease | 2006

The IL-1β system in epilepsy-associated malformations of cortical development

Teresa Ravizza; Karin Boer; Sandra Redeker; Wim G. M. Spliet; P.C. van Rijen; Dirk Troost; Annamaria Vezzani; Eleonora Aronica

Focal cortical dysplasia (FCD) and glioneuronal tumors (GNT) are recognized causes of chronic intractable epilepsy. The cellular mechanism(s) underlying their epileptogenicity remain largely unknown. Compelling evidence in experimental models of seizures indicates an important role of interleukin (IL)-1beta in the mechanisms of hyperexcitability leading to the occurrence of seizures. We immunocytochemically investigated the brain expression and cellular distribution pattern of IL-1beta, IL-1 receptor (IL-1R) types I and II and IL-1R antagonist (IL-1Ra) in FCD and GNT specimens, and we correlate these parameters with the clinical history of epilepsy in patients with medically intractable seizures. In normal control cortex, and in perilesional regions with histologically normal cortex, IL-1beta, IL-1Rs and IL-1Ra expression was undetectable. In all FCD and GNT specimens, IL-1beta and its signalling receptor IL-1RI were highly expressed by more than 30% of neurons and glia whereas the decoy receptor IL-RII and IL-Ra were expressed to a lesser extent by approximately 10% and 20% of cells, respectively. These findings show a high expression of IL-1beta and its functional receptor (IL-1RI) in FCD and GNT specimens together with a relative paucity of mechanisms (IL-1RII and IL-1Ra) apt to inactivate IL-1beta actions. Moreover, the number of IL-1beta- and IL-1RI-positive neurons was positively correlated with the frequency of seizures, whereas the number of IL-1Ra-positive neurons and astroglial cells was negatively correlated with the duration of epilepsy prior to surgery. The expression of IL-1beta family members in these developmental lesions may contribute to their intrinsic and high epileptogenicity, thus possibly representing a novel target for antiepileptic strategies.


Epilepsia | 2004

Expression and Cellular Distribution of Multidrug Resistance–related Proteins in the Hippocampus of Patients with Mesial Temporal Lobe Epilepsy

Eleonora Aronica; Jan A. Gorter; Marja Ramkema; Sandra Redeker; Filiz Ozbas-Gerceker; Edwin A. Van Vliet; George L. Scheffer; Rik J. Scheper; Paul van der Valk; Johannes C. Baayen; Dirk Troost

Summary:  Purpose: This study investigated the cellular distribution of different multidrug resistance (MDR)‐related proteins such as P‐glycoprotein (P‐gp), the multidrug resistance–associated proteins (MRP) 1 and 2, and the major vault protein (MVP) in normal and sclerotic hippocampus of patients with medically refractory mesial temporal lobe epilepsy (MTLE).

Collaboration


Dive into the Eleonora Aronica's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dirk Troost

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annamaria Vezzani

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karin Boer

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Teresa Ravizza

Mario Negri Institute for Pharmacological Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge