Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eleonora Bassino is active.

Publication


Featured researches published by Eleonora Bassino.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Obestatin affords cardioprotection to the ischemic-reperfused isolated rat heart and inhibits apoptosis in cultures of similarly stressed cardiomyocytes

Giuseppe Alloatti; Elisa Arnoletti; Eleonora Bassino; Claudia Penna; Maria Giulia Perrelli; Corrado Ghè; Giampiero Muccioli

Obestatin, a newly discovered peptide encoded by the ghrelin gene, induces the expression of genes regulating pancreatic beta-cell differentiation, insulin biosynthesis, and glucose metabolism. It also activates antiapoptotic signaling pathways such as phosphoinositide 3-kinase (PI3K) and ERK1/2 in pancreatic beta-cells and human islets. Since these kinases have been shown to protect against myocardial injury, we sought to investigate whether obestatin would exert cardioprotective effects. Both isolated perfused rat heart and cultured cardiomyocyte models of ischemia-reperfusion (I/R) were used to measure infarct size and cell apoptosis as end points of injury. The presence of specific obestatin receptors on cardiac cells as well as the signaling pathways underlying the obestatin effect were also studied. In the isolated heart, the addition of rat obestatin-(1-23) before ischemia reduced infarct size and contractile dysfunction in a concentration-dependent manner, whereas obestatin-(23-1), a synthetic analog with an inverse aminoacid sequence, was ineffective. The cardioprotective effect of obestatin-(1-23) was observed at concentrations of 10-50 nmol/l and was abolished by inhibiting PI3K or PKC by the addition of wortmannin (100 nmol/l) or chelerythrine, (5 micromol/l), respectively. In rat H9c2 cardiac cells or isolated ventricular myocytes subjected to I/R, 50 nmol/l obestatin-(1-23) reduced cardiomyocyte apoptosis and reduced caspase-3 activation; the antiapoptotic effect was blocked by the inhibition of PKC, PI3K, or ERK1/2 pathways. In keeping with these functional findings, radioreceptor binding results revealed the presence of specific high-affinity obestatin-binding sites, mainly localized on membranes of the ventricular myocardium and cardiomyocytes. Our data suggest that, by acting on specific receptors, obestatin-(1-23) activates PI3K, PKC-epsilon, PKC-delta, and ERK1/2 signaling and protects cardiac cells against myocardial injury and apoptosis induced by I/R.


Cardiovascular Diabetology | 2012

Obestatin induced recovery of myocardial dysfunction in type 1 diabetic rats: underlying mechanisms

Manuela Aragno; Raffaella Mastrocola; Corrado Ghè; Elisa Arnoletti; Eleonora Bassino; Giuseppe Alloatti; Giampiero Muccioli

BackgroundThe aim of this study was to investigate whether obestatin (OB), a peptide mediator encoded by the ghrelin gene exerting a protective effect in ischemic reperfused heart, is able to reduce cardiac dysfunctions in adult diabetic rats.MethodsDiabetes was induced by STZ injection (50 mg/kg) in Wistar rats (DM). OB was administered (25 μg/kg) twice a day for 6 weeks. Non-diabetic (ND) rats and DM rats were distributed into four groups: untreated ND, OB-treated ND, untreated DM, OB-treated DM. Cardiac contractility and ß-adrenergic response were studied on isolated papillary muscles. Phosphorylation of AMPK, Akt, ERK1/2 and GSK3ß as well ß-1 adrenoreceptors levels were detected by western blot, while α-MHC was measured by RT-PCR.ResultsOB preserved papillary muscle contractility (85 vs 27% of ND), ß-adrenergic response (103 vs 65% of ND), as well ß1-adrenoreceptors and α-MHC levels in diabetic myocardial tissue. Moreover, OB up-regulated the survival kinases Akt and ERK1/2, and enhanced AMPK and GSK3ß phosphorylation. OB corrected oxidative unbalance, reduced pro-inflammatory cytokine TNF-α plasma levels, NFkB translocation and pro-fibrogenic factors expression in diabetic myocardium.ConclusionsOB displays a significant beneficial effect against the alterations of contractility and ß-adrenergic response in the heart of STZ-treated diabetic rats, which was mainly associated with the ability of OB to up-regulate the transcription of ß1-adrenergic receptors and α-MHC; this protective effect was accompanied by the ability to restore oxidative balance and to promote phosphorylation/modulation of AMPK and pro-survival kinases such as Akt, ERK1/2 and GSK3ß.


Experimental Biology and Medicine | 2011

Platelet activating factor: the good and the bad in the ischemic/reperfused heart.

Claudia Penna; Eleonora Bassino; Giuseppe Alloatti

The present review is focused on the dual role played by platelet-activating factor (PAF) in ischemia and reperfusion (I/R) injury of the heart. Although the involvement of PAF in the pathogenesis of myocardial reperfusion injury is well established, in the last few years it has emerged that very low concentrations of PAF exert cardioprotective effects, comparable to that afforded by ischemic preconditioning (IP). PAF is a potent phosphoglyceride involved in different pathophysiological conditions affecting the cardiovascular system, including the development of myocardial I/R injury. PAF is released from the I/R myocardium in concentrations (1–10 nmol/L) high enough to negatively modulate coronary circulation as well as electrical and contractile activities. PAF may act either directly, via generation of secondary mediators, or through the activation of inflammatory cells like platelets and polymorphonuclear neutrophils, which exacerbate postischemic myocardial injury. The effects of PAF are mediated through specific receptors (PAFRs) that belong to the superfamily of G protein-coupled receptors. Since cardiomyocytes not only produce PAF but also possess PAFRs, it is likely that PAF acts as an autocrine/paracrine mediator. Although the negative effects exerted by high concentrations of PAF are well established, several recent findings from our and other laboratories have demonstrated that very low concentrations (pmol/L) of PAF infused before ischemia induce cardioprotective effects similar to those afforded by IP, and that endogenous PAF production participates in the induction of IP itself. The IP-like action exerted by low concentrations of PAF is due to the activation/phosphorylation of kinases included in the reperfusion injury salvage kinase (RISK) pathway, such as protein kinase C, Akt/PkB and nitric oxide synthase. Together with the activation of mitochondrial KATP channels, these events may allow prevention of mitochondrial permeability transition pores opening at reperfusion. Moreover, the nitric oxide-dependent S-nitrosylation of L-type Ca2+ channels induced by PAF reduces intracellular Ca2+ overload.


The FASEB Journal | 2012

The novel chromogranin A-derived serpinin and pyroglutaminated serpinin peptides are positive cardiac β-adrenergic-like inotropes

Bruno Tota; Stefano Gentile; Teresa Pasqua; Eleonora Bassino; Hisatsugu Koshimizu; Niamh X. Cawley; Maria Carmela Cerra; Y. Peng Loh; Tommaso Angelone

Three forms of serpinin peptides, serpinin (Ala26Leu), pyroglutaminated (pGlu)‐serpinin (pGlu23Leu), and serpinin‐Arg‐Arg‐Gly (Ala29Gly), are derived from cleavage at pairs of basic residues in the highly conserved C terminus of chromogranin A (CgA). Serpinin induces PN‐1 expression in neuroendocrine cells to up‐regulate granule biogenesis via a cAMP‐protein kinase A‐Sp1 pathway, while pGlu‐serpinin inhibits cell death. The aim of this study was to test the hypothesis that serpinin peptides are produced in the heart and act as novel β‐adrenergic‐like cardiac modulators. We detected serpinin peptides in the rat heart by HPLC and ELISA methods. The peptides included predominantly Ala29Gly and pGlu‐serpinin and a small amount of serpinin. Using the Langendorff perfused rat heart to evaluate the hemodynamic changes, we found that serpinin and pGlu‐serpinin exert dose‐dependent positive inotropic and lusitropic effects at 11–165 nM, within the first 5 min after administration. The pGlu‐serpinin‐induced contractility is more potent than that of serpinin, starting from 1 nM. Using the isolated rat papillary muscle preparation to measure contractility in terms of tension development and muscle length, we further corroborated the pGlu‐serpinin‐induced positive inotropism. Ala29Gly was unable to affect myocardial performance. Both pGlu‐serpinin and serpinin act through a β1‐adrenergic receptor/adenylate cyclase/cAMP/PKA pathway, indicating that, contrary to the β‐blocking profile of the other CgA‐derived cardiosuppressive peptides, vasostatin‐1 and catestatin, these two C‐terminal peptides act as β‐adrenergic‐like agonists. In cardiac tissue extracts, pGluserpinin increased intracellular cAMP levels and phosphorylation of phospholamban (PLN)Ser16, ERK1/2, and GSK‐3β. Serpinin and pGlu‐serpinin peptides emerge as novel β‐adrenergic inotropic and lusitropic modulators, suggesting that CgA and the other derived cardioactive peptides can play a key role in how the myocardium orchestrates its complex response to sympathochromaffin stimulation.—Tota, B., Gentile, S., Pasqua, T., Bassino, E., Koshimizu, H., Cawley, N. X., Cerra, M. C., Loh, Y. P., Angelone, T. The novel chromogranin A‐derived serpinin and pyroglutaminated serpinin peptides are positive cardiac β‐adrenergic‐like inotropes. FASEB J. 26, 2888–2898 (2012). www.fasebj.org


Cardiovascular Research | 2011

A novel catestatin-induced antiadrenergic mechanism triggered by the endothelial PI3K–eNOS pathway in the myocardium

Eleonora Bassino; Sara Fornero; Maria Pia Gallo; Roberta Ramella; Sushil K. Mahata; Bruno Tota; Renzo Levi; Giuseppe Alloatti

AIMS Catestatin (CST) is a chromogranin A (CgA)-derived peptide (hCgA352-372) with three identified human variants (G364S/P370L/R374Q-CST) that show differential potencies towards the inhibition of catecholamine release. Although CST affects several cardiovascular parameters, the mechanisms underlying CST action in the heart have remained elusive. Therefore, we sought to determine the mechanism of action of CST and its variants on ventricular myocardium and endothelial cells. METHODS AND RESULTS Contractile force and Ca(2+) transients were measured, respectively, on rat papillary muscles and isolated cardiomyocytes (CC) under basal conditions and after β-adrenergic stimulation. Nitric oxide (NO) production and endothelial nitric oxide synthase (eNOS) phosphorylation (P(Ser1179)eNOS) were studied in bovine aortic endothelial (BAE-1) cells. Under basal conditions, wild-type CST (WT-CST, 10-50 nM) transiently enhanced myocardial contractility. CST variants (G364S and P370L) exerted a comparable positive inotropic effect. The H(1) histamine receptor antagonist mepyramine abolished the increase of contractile force induced by WT-CST. Moreover, WT-CST dose-dependently (5-50 nM) reduced the effect of β-adrenergic stimulation. This anti-adrenergic effect was not mediated by a direct action on CC, but involved a PI3K-dependent NO release from endocardial endothelial cells. Indeed, CST induced a wortmannin-sensitive, Ca(2+)-independent increase in NO production and eNOS phosphorylation on BAE-1 cells. While the anti-adrenergic and NO release effects of P370L-CST were comparable with those of WT-CST, the G364S variant was ineffective on the same parameters. CONCLUSION Our results suggest that the anti-adrenergic action of CST depends on the endothelial PI3K-Akt-eNOS pathway and that its structural alterations entail functional features that correlate with the different anti-hypertensive potential described in humans.


PLOS ONE | 2015

Catestatin exerts direct protective effects on rat cardiomyocytes undergoing ischemia/reperfusion by stimulating PI3K-Akt-GSK3β pathway and preserving mitochondrial membrane potential.

Eleonora Bassino; Sara Fornero; Maria Pia Gallo; Clara Gallina; Saveria Femminò; Renzo Levi; Bruno Tota; Giuseppe Alloatti

Catestatin (Cst) is a 21-amino acid peptide deriving from Chromogranin A. Cst exerts an overall protective effect against an excessive sympathetic stimulation of cardiovascular system, being able to antagonize catecholamine secretion and to reduce their positive inotropic effect, by stimulating the release of nitric oxide (NO) from endothelial cells. Moreover, Cst reduces ischemia/reperfusion (I/R) injury, improving post-ischemic cardiac function and cardiomyocyte survival. To define the cardioprotective signaling pathways activated by Cst (5 nM) we used isolated adult rat cardiomyocytes undergoing simulated I/R. We evaluated cell viability rate with propidium iodide labeling and mitochondrial membrane potential (MMP) with the fluorescent probe JC-1. The involvement of Akt, GSK3β, eNOS and phospholamban (PLN) cascade was studied by immunofluorescence. The role of PI3K-Akt/NO/cGMP pathway was also investigated by using the pharmacological blockers wortmannin (Wm), L-NMMA and ODQ. Our experiments revealed that Cst increased cell viability rate by 65% and reduced cell contracture in I/R cardiomyocytes. Wm, L-NMMA and ODQ limited the protective effect of Cst. The protective outcome of Cst was related to its ability to maintain MMP and to increase AktSer473, GSK3βSer9, PLNThr17 and eNOSSer1179 phosphorylation, while treatment with Wm abolished these effects. Thus, the present results show that Cst is able to exert a direct action on cardiomyocytes and give new insights into the molecular mechanisms involved in its protective effect, highlighting the PI3K/NO/cGMP pathway as the trigger and the MMP preservation as the end point of its action.


Experimental Dermatology | 2015

Paracrine crosstalk between human hair follicle dermal papilla cells and microvascular endothelial cells

Eleonora Bassino; Franco Gasparri; Valentina Giannini; Luca Munaron

Human follicle dermal papilla cells (FDPC) are a specialized population of mesenchymal cells located in the skin. They regulate hair follicle (HF) development and growth, and represent a reservoir of multipotent stem cells. Growing evidence supports the hypothesis that HF cycling is associated with vascular remodeling. Follicular keratinocytes release vascular endothelial growth factor (VEGF) that sustains perifollicular angiogenesis leading to an increase of follicle and hair size. Furthermore, several human diseases characterized by hair loss, including Androgenetic Alopecia, exhibit alterations of skin vasculature. However, the molecular mechanisms underlying HF vascularization remain largely unknown. In vitro coculture approaches can be successfully employed to greatly improve our knowledge and shed more light on this issue. Here we used Transwell‐based co‐cultures to show that FDPC promote survival, proliferation and tubulogenesis of human microvascular endothelial cells (HMVEC) more efficiently than fibroblasts. Accordingly, FDPC enhance the endothelial release of VEGF and IGF‐1, two well‐known proangiogenic growth factors. Collectively, our data suggest a key role of papilla cells in vascular remodeling of the hair follicle.


Computers in Biology and Medicine | 2015

A cellular Potts model analyzing differentiated cell behavior during in vivo vascularization of a hypoxic tissue

Marco Scianna; Eleonora Bassino; Luca Munaron

Angiogenesis, the formation of new blood vessel networks from existing capillary or post-capillary venules, is an intrinsically multiscale process occurring in several physio-pathological conditions. In particular, hypoxic tissue cells activate downstream cascades culminating in the secretion of a wide range of angiogenic factors, including VEGF isoforms. Such diffusive chemicals activate the endothelial cells (ECs) forming the external walls of the nearby vessels that chemotactically migrate toward the hypoxic areas of the tissue as multicellular sprouts. A functional network eventually emerges by further branching and anastomosis processes. We here propose a CPM-based approach reproducing selected features of the angiogenic progression necessary for the reoxygenation of a hypoxic tissue. Our model is able to span the different scale involved in the angiogenic progression as it incorporates reaction-diffusion equations for the description of the evolution of microenvironmental variables in a discrete mesoscopic cellular Potts model (CPM) that reproduces the dynamics of the vascular cells. A key feature of this work is the explicit phenotypic differentiation of the ECs themselves, distinguished in quiescent, stalk and tip. The simulation results allow identifying a set of key mechanisms underlying tissue vascularization. Further, we provide evidence that the nascent pattern is characterized by precise topological properties. Finally, we link abnormal sprouting angiogenesis with alteration in selected cell behavior.


BioMed Research International | 2014

Obligatory Role for Endothelial Heparan Sulphate Proteoglycans and Caveolae Internalization in Catestatin-Dependent eNOS Activation

Sara Fornero; Eleonora Bassino; Roberta Ramella; Clara Gallina; Sushil K. Mahata; Bruno Tota; Renzo Levi; Giuseppe Alloatti; Maria Pia Gallo

The chromogranin-A peptide catestatin modulates a wide range of processes, such as cardiovascular functions, innate immunity, inflammation, and metabolism. We recently found that the cardiac antiadrenergic action of catestatin requires a PI3K-dependent NO release from endothelial cells, although the receptor involved is yet to be identified. In the present work, based on the cationic properties of catestatin, we tested the hypothesis of its interaction with membrane heparan sulphate proteoglycans, resulting in the activation of a caveolae-dependent endocytosis. Experiments were performed on bovine aortic endothelial cells. Endocytotic vesicles trafficking was quantified by confocal microscopy using a water-soluble membrane dye; catestatin colocalization with heparan sulphate proteoglycans and caveolin 1 internalization were studied by fluorimetric measurements in live cells. Modulation of the catestatin-dependent eNOS activation was assessed by immunofluorescence and immunoblot analysis. Our results demonstrate that catestatin (5 nM) colocalizes with heparan sulphate proteoglycans and induces a remarkable increase in the caveolae-dependent endocytosis and caveolin 1 internalization, which were significantly reduced by both heparinase and wortmannin. Moreover, catestatin was unable to induce Ser1179 eNOS phosphorylation after pretreatments with heparinase and methyl-β-cyclodextrin. Taken together, these results highlight the obligatory role for proteoglycans and caveolae internalization in the catestatin-dependent eNOS activation in endothelial cells.


Natural Product Research | 2016

Effects of flavonoid derivatives on human microvascular endothelial cells

Eleonora Bassino; Susanna Antoniotti; Franco Gasparri; Luca Munaron

Abstract Some natural compounds, including flavonoids, are active in vasculature re-growth during hair follicle disruption, but their effects have not been yet evaluated directly on microvascular endothelial cells. Skin vascularisation regulates the physiological blood supply required for hair growth and its dysregulation is the basis of several human diseases. Follicle-derived vascular endothelial growth factor (VEGF) release from follicular keratinocytes promotes perifollicular vascularisation and increases follicle and hair size, while blockade of VEGF-mediated angiogenesis leads to impaired hair growth. Here, we tested three flavonoids, namely visnadin (VSD), hesperidin (HSP) and baicalin (BC), on cultured human microvascular endothelial cells (HMEC), comparing their effects with minoxidil (MXD), a synthetic drug broadly used in the treatment of androgenetic alopecia. The response to these compounds was assayed in terms of endothelial survival, proliferation, tubulogenesis and proangiogenic signalling. We show that BC promotes HMEC proliferation, while both VSD and MXD enhance tubulogenesis. Interestingly, only HSP increases VEGFR-2 phosphorylation.

Collaboration


Dive into the Eleonora Bassino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruno Tota

University of Calabria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge