Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eleonora Molesti is active.

Publication


Featured researches published by Eleonora Molesti.


Journal of Virology | 2011

Antigenic Drift in H5N1 Avian Influenza Virus in Poultry Is Driven by Mutations in Major Antigenic Sites of the Hemagglutinin Molecule Analogous to Those for Human Influenza Virus

Adelaide Milani; Nigel J. Temperton; Bianca Zecchin; Alessandra Buratin; Eleonora Molesti; Mona Meherez Aly; Abdel S. Arafa; Ilaria Capua

ABSTRACT H5N1 highly pathogenic avian influenza virus has been endemic in poultry in Egypt since 2008, notwithstanding the implementation of mass vaccination and culling of infected birds. Extensive circulation of the virus has resulted in a progressive genetic evolution and an antigenic drift. In poultry, the occurrence of antigenic drift in avian influenza viruses is less well documented and the mechanisms remain to be clarified. To test the hypothesis that H5N1 antigenic drift is driven by mechanisms similar to type A influenza viruses in humans, we generated reassortant viruses, by reverse genetics, that harbored molecular changes identified in genetically divergent viruses circulating in the vaccinated population. Parental and reassortant phenotype viruses were antigenically analyzed by hemagglutination inhibition (HI) test and microneutralization (MN) assay. The results of the study indicate that the antigenic drift of H5N1 in poultry is driven by multiple mutations primarily occurring in major antigenic sites at the receptor binding subdomain, similarly to what has been described for human influenza H1 and H3 subtype viruses.


Journal of General Virology | 2013

Mutations in haemagglutinin that affect receptor binding and pH stability increase replication of a PR8 influenza virus with H5 HA in the upper respiratory tract of ferrets and may contribute to transmissibility.

Holly Shelton; Kim L. Roberts; Eleonora Molesti; Nigel J. Temperton; Wendy S. Barclay

The H5N1 influenza A viruses have circulated widely in the avian population for 10 years with only sporadic infection of humans observed and no sustained human to human transmission. Vaccination against potential pandemic strains is one strategy in planning for future influenza pandemics; however, the success of live attenuated vaccines for H5N1 has been limited, due to poor replication in the human upper respiratory tract (URT). Mutations that increase the ability of H5N1 viruses to replicate in the URT will aid immunogenicity of these vaccines and provide information about humanizing adaptations in H5N1 strains that may signal transmissibility. As well as mediating receptor interactions, the haemagglutinin (HA) protein of influenza facilitates fusion of the viral membrane and genome entry into the host cell; this process is pH dependent. We have shown in this study that the pH at which a panel of avian influenza HA proteins, including H5, mediate fusion is higher than that for human influenza HA proteins, and that mutations in the H5 HA can reduce the pH of fusion. Coupled with receptor switching mutations, increasing the pH stability of the H5 HA resulted in increased viral shedding of H5N1 from the nasal cavity of ferrets and contact transmission to a co-housed animal. Ferret serum antibodies induced by infection with any of the mutated H5 HA viruses neutralized HA pseudotyped lentiviruses bearing homologous or heterologous H5 HAs, suggesting that this strategy to increase nasal replication of a vaccine virus would not compromise vaccine efficacy.


F1000Research | 2015

Antiviral therapies against Ebola and other emerging viral diseases using existing medicines that block virus entry

Jason S. Long; Edward Wright; Eleonora Molesti; Nigel J. Temperton; Wendy S. Barclay

Emerging viral diseases pose a threat to the global population as intervention strategies are mainly limited to basic containment due to the lack of efficacious and approved vaccines and antiviral drugs. The former was the only available intervention when the current unprecedented Ebolavirus (EBOV) outbreak in West Africa began. Prior to this, the development of EBOV vaccines and anti-viral therapies required time and resources that were not available. Therefore, focus has turned to re-purposing of existing, licenced medicines that may limit the morbidity and mortality rates of EBOV and could be used immediately. Here we test three such medicines and measure their ability to inhibit pseudotype viruses (PVs) of two EBOV species, Marburg virus (MARV) and avian influenza H5 (FLU-H5). We confirm the ability of chloroquine (CQ) to inhibit viral entry in a pH specific manner. The commonly used proton pump inhibitors, Omeprazole and Esomeprazole were also able to inhibit entry of all PVs tested but at higher drug concentrations than may be achieved in vivo. We propose CQ as a priority candidate to consider for treatment of EBOV.


European Journal of Immunology | 2013

Improved adjuvanting of seasonal influenza vaccines: Preclinical studies of MVA‐NP+M1 coadministration with inactivated influenza vaccine

Caitlin E. Mullarkey; Amy Boyd; Arjan van Laarhoven; Eric A. Lefevre; B. Veronica Carr; Massimiliano Baratelli; Eleonora Molesti; Nigel J. Temperton; Colin Butter; Bryan Charleston; Teresa Lambe; Sarah C. Gilbert

Licensed seasonal influenza vaccines induce antibody (Ab) responses against influenza hemagglutinin (HA) that are limited in their ability to protect against different strains of influenza. Cytotoxic T lymphocytes recognizing the conserved internal nucleoprotein (NP) and matrix protein (M1) are capable of mediating a cross‐subtype immune response against influenza. Modified vaccinia Ankara (MVA) virus encoding NP and M1 (MVA‐NP+M1) is designed to boost preexisting T‐cell responses in adults in order to elicit a cross‐protective immune response. We examined the coadministration of HA protein formulations and candidate MVA‐NP+M1 influenza vaccines in murine, avian, and swine models. Ab responses postimmunization were measured by ELISA and pseudotype neutralization assays. Here, we demonstrate that MVA‐NP+M1 can act as an adjuvant enhancing Ab responses to HA while simultaneously inducing potent T‐cell responses to conserved internal Ags. We show that this regimen leads to the induction of cytophilic Ab isotypes that are capable of inhibiting hemagglutination and in the context of H5 exhibit cross‐clade neutralization. The simultaneous induction of T cells and Ab responses has the potential to improve seasonal vaccine performance and could be employed in pandemic situations.


Journal of Molecular and Genetic Medicine | 2013

The human Transmembrane Protease Serine 2 is necessary for the production of Group 2 influenza A virus pseudotypes

Francesca Ferrara; Eleonora Molesti; Eva Böttcher-Friebertshäuser; Davide Corti; Simon D. Scott; Nigel J. Temperton

The monomer of influenza haemagglutinin is synthesized as a single polypeptide precursor that during maturation is cleaved by proteases into two active subunits. Other studies have demonstrated that the human Transmembrane Protease Serine 2 (TMPRSS2) can cleave the HA of human seasonal influenza viruses. Consequently, we have investigated the use of human Transmembrane Protease Serine 2 to produce high titre influenza haemmagglutinin (HA) lentiviral pseudotypes from Group 2 influenza viruses. Such pseudotypes represent powerful and safe tools to study viral entry and immune responses. Influenza pseudotype particles are obtained by co-transfecting human embryonic kidney HEK293T/17 cells using plasmids coding for the influenza HA, HIV gag-pol and a lentiviral vector incorporating firefly luciferase. However, in order to produce Group 2 pseudotypes, it was necessary to co-transfect a plasmid expressing the TMPRSS2 endoprotease, to achieve the necessary HA cleavage for infective particle generation. These lentiviral pseudotypes were shown to transduce HEK293T/17 cells with high efficiency. This demonstrates that TMPRSS2 is necessary for the functional activation, in vitro, of both the HA of human seasonal influenza and other Group 2 HA influenza strains. Additionally, we show that the Group 2 influenza pseudotype particles can be used as surrogate antigens in neutralization assays and are efficiently neutralized by corresponding influenza virus reference sera. These data demonstrate that the viral pseudotype system is a powerful method for serological surveillance of a wide range of influenza viruses.


Journal of Virology | 2011

Adjuvant-free immunization with hemagglutinin-Fc fusion proteins as an approach to influenza vaccines.

Silvia Loureiro; Junyuan Ren; Pongsathon Phapugrangkul; Camilo Colaco; Christopher R. Bailey; Holly Shelton; Eleonora Molesti; Nigel J. Temperton; Wendy S. Barclay; Ian M. Jones

ABSTRACT The hemagglutinins (HAs) of human H1 and H3 influenza viruses and avian H5 influenza virus were produced as recombinant fusion proteins with the human immunoglobulin Fc domain. Recombinant HA-human immunoglobulin Fc domain (HA-HuFc) proteins were secreted from baculovirus-infected insect cells as glycosylated oligomer HAs of the anticipated molecular mass, agglutinated red blood cells, were purified on protein A, and were used to immunize mice in the absence of adjuvant. Immunogenicity was demonstrated for all subtypes, with the serum samples demonstrating subtype-specific hemagglutination inhibition, epitope specificity similar to that seen with virus infection, and neutralization. HuFc-tagged HAs are potential candidates for gene-to-vaccine approaches to influenza vaccination.


Journal of Molecular and Genetic Medicine | 2012

The use of equine influenza pseudotypes for serological screening.

Simon D. Scott; Eleonora Molesti; Nigel J. Temperton; Francesca Ferrara; Eva Böttcher-Friebertshäuser; Janet M. Daly

Standard assays used for influenza serology present certain practical issues, such as inter-laboratory variability, complex protocols and the necessity for handling certain virus strains in high biological containment facilities. In an attempt to address this, avian and human influenza HA pseudotyped retroviruses have been successfully employed in antibody neutralization assays. In this study we generated an equine influenza pseudotyped lentivirus for serological screening. This was achieved by co-transfection of HEK293T cells with plasmids expressing the haemagglutinin (HA) protein of an H3N8 subtype equine influenza virus strain, HIV gag-pol and firefly luciferase reporter genes and harvesting virus from supernatant. In order to produce infective pseudotype particles it was necessary to additionally co-transfect a plasmid encoding the TMPRSS2 endoprotease to cleave the HA. High titre pseudotype virus (PV) was then used in PV antibody neutralization assays (PVNAs) to successfully distinguish between vaccinated and non-vaccinated equines. The sera were also screened by single radial haemolysis (SRH) assay. There was a 65% correlation between the results of the two assays, with the PVNA assay appearing slightly more sensitive. Future work will extend the testing of the PVNA with a larger number of serum samples to assess sensitivity/specificity, inter/intra-laboratory variability and to define a protective titre.


Clinical & Developmental Immunology | 2014

Multiplex evaluation of influenza neutralizing antibodies with potential applicability to in-field serological studies.

Eleonora Molesti; Edward Wright; Calogero Terregino; Rafat Rahman; Nigel J. Temperton

The increased number of outbreaks of H5 and H7 LPAI and HPAI viruses in poultry has major public and animal health implications. The continuous rapid evolution of these subtypes and the emergence of new variants influence the ability to undertake effective surveillance. Retroviral pseudotypes bearing influenza haemagglutinin (HA) and neuraminidase (NA) envelope glycoproteins represent a flexible platform for sensitive, readily standardized influenza serological assays. We describe a multiplex assay for the study of neutralizing antibodies that are directed against both influenza H5 and H7 HA. This assay permits the measurement of neutralizing antibody responses against two antigenically distinct HAs in the same serum/plasma sample thus increasing the amount and quality of serological data that can be acquired from valuable sera. Sera obtained from chickens vaccinated with a monovalent H5N2 vaccine, chickens vaccinated with a bivalent H7N1/H5N9 vaccine, or turkeys naturally infected with an H7N3 virus were evaluated in this assay and the results correlated strongly with data obtained by HI assay. We show that pseudotypes are highly stable under basic cold-chain storage conditions and following multiple rounds of freeze-thaw. We propose that this robust assay may have practical utility for in-field serosurveillance and vaccine studies in resource-limited regions worldwide.


Journal of Molecular and Genetic Medicine | 2013

The production and development of H7 Influenza virus pseudotypes for the study of humoral responses against avian viruses

Eleonora Molesti; Francesca Ferrara; Eva Böttcher-Friebertshäuser; Calogero Terregino; Nigel J. Temperton

In recent years, high pathogenicity avian influenza (HPAI) virus, H5N1, low pathogenicity avian influenza (LPAI) virus, H9N2, and both HPAI and LPAI H7 viruses have proved devastating for the affected economies reliant on poultry industry, and have posed serious public health concerns. These viruses have repeatedly caused zoonotic disease in humans, raising concerns of a potential influenza pandemic. Despite the focus on the HPAI H5N1 outbreak in 1997 some H7 strains have also shown to be occasionally adaptable to infecting humans. Therefore, applying knowledge of the H5 virus evolution and spread to the development of sensitive serological methods is likely to improve our ability to understand and respond to the emergence of other HPAI and LPAI viruses, present within the avian populations, with the potential to infect humans and other species. In the present study we describe the construction and production of lentiviral pseudotypes bearing envelope glycoproteins of LPAI and HPAI H7 avian influenza viruses, which have been responsible for several outbreaks in the past decade. The H7 pseudotypes were evaluated in pseudotype-based neutralization (pp-NT) assays in order to detect and quantify the presence of neutralizing antibodies in avian sera, which were confirmed H7 positive by inhibition of haemagglutination (HI) test. Overall, our results substantiate influenza virus pseudotype neutralization as a robust tool for influenza sero-surveillance.


Influenza Research and Treatment | 2013

Comparative Serological Assays for the Study of H5 and H7 Avian Influenza Viruses

Eleonora Molesti; Adelaide Milani; Calogero Terregino; Nigel J. Temperton

The nature of influenza virus to randomly mutate and evolve into new types is an important challenge in the control of influenza infection. It is necessary to monitor virus evolution for a better understanding of the pandemic risk posed by certain variants as evidenced by the highly pathogenic avian influenza (HPAI) viruses. This has been clearly recognized in Egypt following the notification of the first HPAI H5N1 outbreak. The continuous circulation of the virus and the mass vaccination programme undertaken in poultry have resulted in a progressive genetic evolution and a significant antigenic drift near the major antigenic sites. In order to establish if vaccination is sufficient to provide significant intra- and interclade cross-protection, lentiviral pseudotypes derived from H5N1 HPAI viruses (A/Vietnam/1194/04, A/chicken/Egypt-1709-01/2007) and an antigenic drift variant (A/chicken/Egypt-1709-06-2008) were constructed and used in pseudotype-based neutralization assays (pp-NT). pp-NT data obtained was confirmed and correlated with HI and MN assays. A panel of pseudotypes belonging to influenza Groups 1 and 2, with a combination of reporter systems, was also employed for testing avian sera in order to support further application of pp-NT as an alternative valid assay that can improve avian vaccination efficacy testing, vaccine virus selection, and the reliability of reference sera.

Collaboration


Dive into the Eleonora Molesti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adelaide Milani

Food and Agriculture Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward Wright

University of Westminster

View shared research outputs
Researchain Logo
Decentralizing Knowledge