Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eleonora Mondini is active.

Publication


Featured researches published by Eleonora Mondini.


Journal of Lipid Research | 2013

Obese adipocytes show ultrastructural features of stressed cells and die of pyroptosis

Antonio Giordano; Incoronata Murano; Eleonora Mondini; Jessica Perugini; Arianna Smorlesi; Ilenia Severi; Rocco Barazzoni; Philipp E. Scherer; Saverio Cinti

We previously suggested that, in obese animals and humans, white adipose tissue inflammation results from the death of hypertrophic adipocytes; these are then cleared by macrophages, giving rise to distinctive structures we denominated crown-like structures. Here we present evidence that subcutaneous and visceral hypertrophic adipocytes of leptin-deficient (ob/ob and db/db) obese mice exhibit ultrastructural abnormalities (including calcium accumulation and cholesterol crystals), many of which are more common in hyperglycemic db/db versus normoglycemic ob/ob mice and in visceral versus subcutaneous depots. Degenerating adipocytes whose intracellular content disperses in the extracellular space were also noted in obese mice; in addition, increased anti-reactive oxygen species enzyme expression in obese fat pads, documented by RT-PCR and immunohistochemistry, suggests that ultrastructural changes are accompanied by oxidative stress. RT-PCR showed NLRP3 inflammasome activation in the fat pads of both leptin-deficient and high-fat diet obese mice, in which formation of active caspase-1 was documented by immunohistochemistry in the cytoplasm of several hypertrophic adipocytes. Notably, caspase-1 was not detected in FAT-ATTAC transgenic mice, where adipocytes die of apoptosis. Thus, white adipocyte overexpansion induces a stress state that ultimately leads to death. NLRP3-dependent caspase-1 activation in hypertrophic adipocytes likely induces obese adipocyte death by pyroptosis, a proinflammatory programmed cell death.


Cytotherapy | 2008

Characterization and expansion of mesenchymal progenitor cells from first-trimester chorionic villi of human placenta

Antonella Poloni; V. Rosini; Eleonora Mondini; Giulia Maurizi; Stefania Mancini; G. Discepoli; S. Biasio; G. Battaglini; Eleonora Berardinelli; Federica Serrani; Pietro Leoni

BACKGROUND Mesenchymal stromal cells (MSC) have been identified in a variety of fetal and adult tissues, including bone marrow (BM), fetal blood and liver. We report on the isolation, expansion and differentiation in vitro of MSC-like cells from chorionic villi (CV). METHODS We evaluated 10 samples of CV collected at the first trimester (gestational age 11-13 weeks). We only used cells taken from back-up culture after a successful karyotype analysis. CV cells were characterized by morphologic, immunophenotypic and molecular analysis. The differentiation ability of mesenchymal and neural lineages was detected using specific culture conditions. Cell expansion was assessed after plating cells at different densities in different media, supplemented with animal and human serum. RESULTS CV cells showed a homogeneous population of spindle-shaped cells after the first passage. Cells expressed CD90, CD105, CD73, CD44, CD29 and CD13 but not CD45, CD14, CD34 and CD117. They expressed Oct-4, Rex-1, GATA-4 and nestin, which characterize the undifferentiated stem cell state. They differentiated into osteocytes, adipocytes, chondrocytes and neuronal cells. Cell expansion was greater than that of adult BM-derived MSC, 9 logs with fetal bovine serum and 6 logs with human serum. Despite their high proliferative capacity, we did not observe any karyotypic abnormalities after culture. DISCUSSION Our study shows that CV cells have better potential for expansion than adult stem cells. They can proliferate in a medium with human allogeneic serum and can differentiate into mesenchymal and neural lineages. CV cells may be an excellent cell source for therapeutic applications.


Cytotherapy | 2009

Selection of CD271 cells and human AB serum allows a large expansion of mesenchymal stromal cells from human bone marrow

Antonella Poloni; Giulia Maurizi; V. Rosini; Eleonora Mondini; Stefania Mancini; G. Discepoli; S. Biasio; G. Battaglini; S. Felicetti; Eleonora Berardinelli; Federica Serrani; Pietro Leoni

BACKGROUND Mesenchymal stromal cells (MSC) are promising candidates for cell therapy and tissue engineering and may be used to treat acute graft-versus-host disease (GvHD). However, major obstacles for their clinical use are the required cell dose and the biosafety and potential immunogenicity of fetal bovine serum (FBS), which is a crucial supplement of all media currently used for the culture of MSC. METHODS In this study MSC were successfully expanded after selection of CD271 cells from human bone marrow (BM) mononuclear cells in medium supplemented with 10% pooled allogeneic human serum. RESULTS We isolated MSC from 10 healthy donor BM by plastic adherence and immunomagnetic selection of the CD271(+) fraction and expanded MSC in medium supplemented with pooled human allogeneic serum and animal serum. We isolated a homogeneous multipotent population by CD271(+) selection with a proliferation rate that was higher than MSC isolated by plastic adherence, 6.8+/-1.57 compared with 2.07+/-1.40 logs. Similar to cells generated in animal serum medium, MSC from allogeneic human serum were positive for mesenchymal markers and negative for hematopoietic markers; moreover they expressed embryonic stem cell genes. A normal karyotype and differentiation capacity into adipogenic, osteogenic and chondrogenic lineages and neurosphere-like structures were preserved throughout long-term culture. DISCUSSION Expansion of MSC is both feasible and large with a CD271-selected population in medium supplemented with 10% pooled allogeneic human serum, without loss of multipotent differentiation capacity or karyotype alterations.


Molecular metabolism | 2016

Stress-induced activation of brown adipose tissue prevents obesity in conditions of low adaptive thermogenesis.

Maria Razzoli; Andrea Frontini; Allison Gurney; Eleonora Mondini; Cankut Cubuk; Liora S. Katz; Cheryl Cero; Patrick J. Bolan; Joaquín Dopazo; Antonio Vidal-Puig; Saverio Cinti; Alessandro Bartolomucci

Background Stress-associated conditions such as psychoemotional reactivity and depression have been paradoxically linked to either weight gain or weight loss. This bi-directional effect of stress is not understood at the functional level. Here we tested the hypothesis that pre-stress level of adaptive thermogenesis and brown adipose tissue (BAT) functions explain the vulnerability or resilience to stress-induced obesity. Methods We used wt and triple β1,β2,β3−Adrenergic Receptors knockout (β-less) mice exposed to a model of chronic subordination stress (CSS) at either room temperature (22 °C) or murine thermoneutrality (30 °C). A combined behavioral, physiological, molecular, and immunohistochemical analysis was conducted to determine stress-induced modulation of energy balance and BAT structure and function. Immortalized brown adipocytes were used for in vitro assays. Results Departing from our initial observation that βARs are dispensable for cold-induced BAT browning, we demonstrated that under physiological conditions promoting low adaptive thermogenesis and BAT activity (e.g. thermoneutrality or genetic deletion of the βARs), exposure to CSS acted as a stimulus for BAT activation and thermogenesis, resulting in resistance to diet-induced obesity despite the presence of hyperphagia. Conversely, in wt mice acclimatized to room temperature, and therefore characterized by sustained BAT function, exposure to CSS increased vulnerability to obesity. Exposure to CSS enhanced the sympathetic innervation of BAT in wt acclimatized to thermoneutrality and in β-less mice. Despite increased sympathetic innervation suggesting adrenergic-mediated browning, norepinephrine did not promote browning in βARs knockout brown adipocytes, which led us to identify an alternative sympathetic/brown adipocytes purinergic pathway in the BAT. This pathway is downregulated under conditions of low adaptive thermogenesis requirements, is induced by stress, and elicits activation of UCP1 in wt and β-less brown adipocytes. Importantly, this purinergic pathway is conserved in human BAT. Conclusion Our findings demonstrate that thermogenesis and BAT function are determinant of the resilience or vulnerability to stress-induced obesity. Our data support a model in which adrenergic and purinergic pathways exert complementary/synergistic functions in BAT, thus suggesting an alternative to βARs agonists for the activation of human BAT.


Stem Cells | 2014

Molecular aspects of adipoepithelial transdifferentiation in mouse mammary gland.

Andreas Prokesch; Arianna Smorlesi; Jessica Perugini; Monia Manieri; Pasquapina Ciarmela; Eleonora Mondini; Zlatko Trajanoski; Karsten Kristiansen; Antonio Giordano; Juliane G. Bogner-Strauss; Saverio Cinti

The circular, reversible conversion of the mammary gland during pregnancy and involution is a paradigm of physiological tissue plasticity. The two most prominent cell types in mammary gland, adipocytes and epithelial cells, interact in an orchestrated way to coordinate this process. Previously, we showed that this conversion is at least partly achieved by reciprocal transdifferentiation between mammary adipocytes and lobulo‐alveolar epithelial cells. Here, we aim to shed more light on the regulators of mammary transdifferentiation. Using immunohistochemistry with cell type‐specific lipid droplet‐coating markers (Perilipin1 and 2), we show that cells with an intermediate adipoepithelial phenotype exist during and after pregnancy. Nuclei of cells with similar transitional structural characteristics are highly positive for Elf5, a master regulator of alveologenesis. In cultured adipocytes, we could show that transient and stable ectopic expression of Elf5 induces expression of the milk component whey acidic protein, although the general adipocyte phenotype is not affected suggesting that additional pioneering factors are necessary. Furthermore, the lack of transdifferentiation of adipocytes during pregnancy after clearing of the epithelial compartment indicates that transdifferentiation signals must emanate from the epithelial part. To explore candidate genes potentially involved in the transdifferentiation process, we devised a high‐throughput gene expression study to compare cleared mammary fat pads with developing, contralateral controls at several time points during pregnancy. Incorporation of bioinformatic predictions of secretory proteins provides new insights into possible paracrine signaling pathways and downstream transdifferentiation factors. We discuss a potential role for osteopontin (secreted phosphoprotein 1 [Spp1]) signaling through integrins to induce adipoepithelial transdifferentiation. Stem Cells 2014;32:2756–2766


Experimental Hematology | 2015

Plasticity of human dedifferentiated adipocytes toward endothelial cells

Antonella Poloni; Giulia Maurizi; Sara Anastasi; Eleonora Mondini; Domenico Mattiucci; Giancarlo Discepoli; Fabiola Tiberi; Stefania Mancini; Stefano Partelli; Angela Maurizi; Saverio Cinti; Attilio Olivieri; Pietro Leoni

The process of cellular differentiation in terminally differentiated cells is thought to be irreversible, and these cells are thought to be incapable of differentiating into distinct cell lineages. Our previous study showed that mature adipocytes represent an alternative source of mesenchymal stem cells. Here, results showed the capacity of mature adipocytes to differentiate into endothelial-like cells, using the ability of these cells to revert into an immature phase without any relievable chromosomal alterations. Mature adipocytes were isolated from human omental and subcutaneous fat and were dedifferentiated in vitro. The resulting cells were subcultivated for endothelial differentiation and were analyzed for their expression of specific genes and proteins. Endothelial-like cells were harvested from the differentiation medium and were traditionally cultured to evaluate the endothelial markers and the karyotype. Cells cultured in specific medium formed tube-like structures and expressed several endothelial marker genes and proteins. The endothelial-like cells expressed significantly higher levels of vascular endothelium growth factor receptor 2, vascular endothelial cadherin, Von Willebrand factor, and CD133 than the untreated cells. These cells were positively stained for CD31 and vascular endothelial cadherin, markers of mature endothelial cells. Moreover, the low-density lipoprotein-uptake assay demonstrated a functionally endothelial differentiation of these cells. When these cells were harvested and reseeded in basal medium, they lost the endothelial markers and reacquired the typical mesenchymal stem cell markers and the ability to expand in a short time period. Moreover, karyotype analysis showed that these cells reverted into an immature phase without any karyotype alterations. In conclusion, the results showed that adipocytes exhibited a great plasticity toward the endothelial lineage, suggesting their possible use in cell therapy applications for vascular disease.


Frontiers in Neuroscience | 2013

Opposite effects of a high-fat diet and calorie restriction on ciliary neurotrophic factor signaling in the mouse hypothalamus.

Ilenia Severi; Jessica Perugini; Eleonora Mondini; Arianna Smorlesi; Andrea Frontini; Saverio Cinti; Antonio Giordano

In the mouse hypothalamus, ciliary neurotrophic factor (CNTF) is mainly expressed by ependymal cells and tanycytes of the ependymal layer covering the third ventricle. Since exogenously administered CNTF causes reduced food intake and weight loss, we tested whether endogenous CNTF might be involved in energy balance regulation. We thus evaluated CNTF production and responsiveness in the hypothalamus of mice fed a high-fat diet (HFD), of ob/ob obese mice, and of mice fed a calorie restriction (CR) regimen. RT-PCR showed that CNTF mRNA increased significantly in HFD mice and decreased significantly in CR animals. Western blotting confirmed that CNTF expression was higher in HFD mice and reduced in CR mice, but high interindividual variability blunted the significance of these differences. By immunohistochemistry, hypothalamic tuberal and mammillary region tanycytes stained strongly for CNTF in HFD mice, whereas CR mice exhibited markedly reduced staining. RT-PCR and Western blotting disclosed that changes in CNTF expression were paralleled by changes in the expression of its specific receptor, CNTF receptor α (CNTFRα). Injection of recombinant CNTF and detection of phospho-signal transducer and activator of transcription 3 (P-STAT3) showed that CNTF responsiveness by the ependymal layer, mainly by tanycytes, was higher in HFD than CR mice. In addition, in HFD mice CNTF administration induced distinctive STAT3 signaling in a large neuron population located in the dorsomedial and ventromedial nuclei, perifornical area and mammillary body. The hypothalamic expression of CNTF and CNTFRα did not change in the hyperphagic, leptin-deficient ob/ob obese mice; accordingly, P-STAT3 immunoreactivity in CNTF-treated ob/ob mice was confined to ependymal layer and arcuate neurons. Collectively, these data suggest that hypothalamic CNTF is involved in controlling the energy balance and that CNTF signaling plays a role in HFD obese mice at specific sites.


Journal of Molecular Neuroscience | 2015

Glial-Like Differentiation Potential of Human Mature Adipocytes

Antonella Poloni; Giulia Maurizi; Federica Foia; Eleonora Mondini; Domenico Mattiucci; Patrizia Ambrogini; Davide Lattanzi; Stefania Mancini; M. Falconi; Saverio Cinti; Attilio Olivieri; Pietro Leoni

The potential ability to differentiate dedifferentiated adipocytes into a neural lineage is attracting strong interest as an emerging method of producing model cells for the treatment of a variety of neurological diseases. Here, we describe the efficient conversion of dedifferentiated adipocytes into a neural-like cell population. These cells grew in neurosphere-like structures and expressed a high level of the early neuroectodermal marker Nestin. These neurospheres could proliferate and express stemness genes, suggesting that these cells could be committed to the neural lineage. After neural induction, NeuroD1, Sox1, Double Cortin, and Eno2 were not expressed. Patch clamp data did not reveal different electrophysiological properties, indicating the inability of these cells to differentiate into mature neurons. In contrast, the differentiated cells expressed a high level of CLDN11, as demonstrated using molecular method, and stained positively for the glial cell markers CLDN11 and GFAP, as demonstrated using immunocytochemistry. These data were confirmed by quantitative results for glial cell line-derived neurotrophic factor production, which showed a higher secretion level in neurospheres and the differentiated cells compared with the untreated cells. In conclusion, our data demonstrate morphological, molecular, and immunocytochemical evidence of initial neural differentiation of mature adipocytes, committing to a glial lineage.


Brain Research | 2015

Activation of transcription factors STAT1 and STAT5 in the mouse median eminence after systemic ciliary neurotrophic factor administration.

Ilenia Severi; Martina Senzacqua; Eleonora Mondini; Francesca Fazioli; Saverio Cinti; Antonio Giordano

Exogenously administered ciliary neurotrophic factor (CNTF) causes weight loss in obese rodents and humans through leptin-like activation of the Jak-STAT3 signaling pathway in hypothalamic arcuate neurons. Here we report for the first time that 40min after acute systemic treatment, rat recombinant CNTF (intraperitoneal injection of 0.3mg/kg of body weight) induced nuclear translocation of the tyrosine-phosphorylated forms of STAT1 and STAT5 in the mouse median eminence and other circumventricular organs, including the vascular organ of the lamina terminalis and the subfornical organ. In the tuberal hypothalamus of treated mice, specific nuclear immunostaining for phospo-STAT1 and phospho-STAT5 was detected in ependymal cells bordering the third ventricle floor and lateral recesses, and in median eminence cells. Co-localization studies documented STAT1 and STAT5 activation in median eminence β-tanycytes and underlying radial glia-like cells. A few astrocytes in the arcuate nucleus responded to CNTF by STAT5 activation. The vast majority of median eminence tanycytes and radial glia-like cells showing phospho-STAT1 and phospho-STAT5 immunoreactivity were also positive for phospho-STAT3. In contrast, STAT3 was the sole STAT isoform activated by CNTF in arcuate nucleus and median eminence neurons. Finally, immunohistochemical evaluation of STAT activation 20, 40, 80, and 120min from the injection demonstrated that cell activation was accompanied by c-Fos expression. Collectively, our findings show that CNTF activates STAT3, STAT1, and STAT5 in vivo. The distinctive activation pattern of these STAT isoforms in the median eminence may disclose novel targets and pathways through which CNTF regulates food intake.


International Journal of Molecular Sciences | 2016

Fto-Deficiency Affects the Gene and MicroRNA Expression Involved in Brown Adipogenesis and Browning of White Adipose Tissue in Mice

Justiina Ronkainen; Eleonora Mondini; Francesca Cinti; Saverio Cinti; Sylvain Sebert; Markku J. Savolainen; Tuire Salonurmi

Genetic variants in the fat mass- and obesity-associated gene Fto are linked to the onset of obesity in humans. The causal role of the FTO protein in obesity is supported by evidence obtained from transgenic mice; however, the underlying molecular pathways pertaining to the role of FTO in obesity have yet to be established. In this study, we investigate the Fto gene in mouse brown adipose tissue and in the browning process of white adipose tissue. We analyze distinct structural and molecular factors in brown and white fat depots of Fto-deficient mice under normal and obesogenic conditions. We report significant alterations in the morphology of adipose tissue depots and the expression of mRNA and microRNA related to brown adipogenesis and metabolism in Fto-deficient mice. Furthermore, we show that high-fat feeding does not attenuate the browning process of Fto-deficient white adipose tissue as observed in wild-type tissue, suggesting a triggering effect of the FTO pathways by the dietary environment.

Collaboration


Dive into the Eleonora Mondini's collaboration.

Top Co-Authors

Avatar

Saverio Cinti

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Antonella Poloni

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Giulia Maurizi

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Ilenia Severi

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Pietro Leoni

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Stefania Mancini

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Antonio Giordano

College of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jessica Perugini

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Andrea Frontini

Marche Polytechnic University

View shared research outputs
Researchain Logo
Decentralizing Knowledge