Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eleonora Solari is active.

Publication


Featured researches published by Eleonora Solari.


American Journal of Physiology-heart and Circulatory Physiology | 2015

Diaphragmatic lymphatic vessel behavior during local skeletal muscle contraction

Andrea Moriondo; Eleonora Solari; Cristiana Marcozzi; Daniela Negrini

The mechanism through which the stresses developed in the diaphragmatic tissue during skeletal muscle contraction sustain local lymphatic function was studied in 10 deeply anesthetized, tracheotomized adult Wistar rats whose diaphragm was exposed after thoracotomy. To evaluate the direct effect of skeletal muscle contraction on the hydraulic intraluminal lymphatic pressures (Plymph) and lymphatic vessel geometry, the maximal contraction of diaphragmatic fibers adjacent to a lymphatic vessel was elicited by injection of 9.2 nl of 1 M KCl solution among diaphragmatic fibers while Plymph was recorded through micropuncture and vessel geometry via stereomicroscopy video recording. In lymphatics oriented perpendicularly to the longitudinal axis of muscle fibers and located at <300 μm from KCl injection, vessel diameter at maximal skeletal muscle contraction (Dmc) decreased to 61.3 ± 1.4% of the precontraction value [resting diameter (Drest)]; however, if injection was at >900 μm from the vessel, Dmc enlarged to 131.1 ± 2.3% of Drest. In vessels parallel to muscle fibers, Dmc increased to 122.8 ± 2.9% of Drest. During contraction, Plymph decreased as much as 22.5 ± 2.6 cmH2O in all submesothelial superficial vessels, whereas it increased by 10.7 ± 5.1 cmH2O in deeper vessels running perpendicular to contracting muscle fibers. Hence, the three-dimensional arrangement of the diaphragmatic lymphatic network seems to be finalized to efficiently exploit the stresses exerted by muscle fibers during the contracting inspiratory phase to promote lymph formation in superficial submesothelial lymphatics and its further propulsion in deeper intramuscular vessels.


American Journal of Physiology-heart and Circulatory Physiology | 2016

Lymph flow pattern in pleural diaphragmatic lymphatics during intrinsic and extrinsic isotonic contraction

Andrea Moriondo; Eleonora Solari; Cristiana Marcozzi; Daniela Negrini

Peripheral rat diaphragmatic lymphatic vessels, endowed with intrinsic spontaneous contractility, were in vivo filled with fluorescent dextrans and microspheres and subsequently studied ex vivo in excised diaphragmatic samples. Changes in diameter and lymph velocity were detected, in a vessel segment, during spontaneous lymphatic smooth muscle contraction and upon activation, through electrical whole-field stimulation, of diaphragmatic skeletal muscle fibers. During intrinsic contraction lymph flowed both forward and backward, with a net forward propulsion of 14.1 ± 2.9 μm at an average net forward speed of 18.0 ± 3.6 μm/s. Each skeletal muscle contraction sustained a net forward-lymph displacement of 441.9 ± 159.2 μm at an average velocity of 339.9 ± 122.7 μm/s, values significantly higher than those documented during spontaneous contraction. The flow velocity profile was parabolic during both spontaneous and skeletal muscle contraction, and the shear stress calculated at the vessel wall at the highest instantaneous velocity never exceeded 0.25 dyne/cm(2). Therefore, we propose that the synchronous contraction of diaphragmatic skeletal muscle fibers recruited at every inspiratory act dramatically enhances diaphragmatic lymph propulsion, whereas the spontaneous lymphatic contractility might, at least in the diaphragm, be essential in organizing the pattern of flow redistribution within the diaphragmatic lymphatic circuit. Moreover, the very low shear stress values observed in diaphragmatic lymphatics suggest that, in contrast with other contractile lymphatic networks, a likely interplay between intrinsic and extrinsic mechanisms be based on a mechanical and/or electrical connection rather than on nitric oxide release.


Experimental Lung Research | 2015

Regional lung tissue changes with mechanical ventilation and fluid load

Cristiana Marcozzi; Andrea Moriondo; Eleonora Solari; Marcella Reguzzoni; Paolo Severgnini; Marina Protasoni; Alberto Passi; Paolo Pelosi; Daniela Negrini

ABSTRACT Purpose: To investigate the regional gravity-dependent impact of mechanical ventilation and fluid overload on lung extracellular matrix (ECM) in healthy lungs. Materials and Methods: The glycosaminoglycans (GAGs) composition of the ventral and dorsal lung parenchyma was determined in anesthetized supine healthy rats mechanically ventilated for 4 hours in air: (a) at low (∼7.5 mL/kg) or high (∼ 23 mL /kg) tidal volume (VT) and 0 cmH2O positive end-expiratory pressure (PEEP); (b) at low or high VT at 5 cmH2O PEEP and (c) with or without 7 mL /(kg·h) intravenous saline infusion. Results: Mechanical ventilation degraded lung ECM, with alveolar septa thinning and structural GAGs disorganization. Low VT ventilation was associated with significant tissue structure changes in both ventral and dorsal lung regions, while high VT mainly affected the dependent ones. PEEP decreased ECM injury mainly in the ventral lung regions, although it did not prevent matrix fragmentation and washout at high VT. Intravascular fluid load increased lung damage prevalently in the ventral lung regions. Conclusion: Mechanical ventilation and fluid load may cause additive injuries in healthy lungs, mainly in ventral regions.


American Journal of Physiology-heart and Circulatory Physiology | 2016

Hyperpolarization-activated cyclic nucleotide-gated channels in peripheral diaphragmatic lymphatics.

Daniela Negrini; Cristiana Marcozzi; Eleonora Solari; Elena Bossi; Raffaella Cinquetti; Marcella Reguzzoni; Andrea Moriondo

Diaphragmatic lymphatic function is mainly sustained by pressure changes in the tissue and serosal cavities during cardiorespiratory cycles. The most peripheral diaphragmatic lymphatics are equipped with muscle cells (LMCs), which exhibit spontaneous contraction, whose molecular machinery is still undetermined. Hypothesizing that spontaneous contraction might involve hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in lymphatic LMCs, diaphragmatic specimens, including spontaneously contracting lymphatics, were excised from 33 anesthetized rats, moved to a perfusion chamber containing HEPES-Tyrodes solution, and treated with HCN channels inhibitors cesium chloride (CsCl), ivabradine, and ZD-7288. Compared with control, exposure to 10 mM CsCl reduced (-65%, n = 13, P < 0.01) the contraction frequency (FL) and increased end-diastolic diameter (DL-d, +7.3%, P < 0.01) without changes in end-systolic diameter (DL-s). Ivabradine (300 μM) abolished contraction and increased DL-d (-14%, n = 10, P < 0.01) or caused an incomplete inhibition of FL (n = 3, P < 0.01), leaving DL-d and DL-s unaltered. ZD-7288 (200 μM) completely (n = 12, P < 0.01) abolished FL, while DL-d decreased to 90.9 ± 2.7% of control. HCN gene expression and immunostaining confirmed the presence of HCN1-4 channel isoforms, likely arranged in different configurations, in LMCs. Hence, all together, data suggest that HCN channels might play an important role in affecting contraction frequency of LMCs.


American Journal of Physiology-heart and Circulatory Physiology | 2017

Temperature-dependent modulation of regional lymphatic contraction frequency and flow

Eleonora Solari; Cristiana Marcozzi; Daniela Negrini; Andrea Moriondo

Lymph drainage and propulsion are sustained by an extrinsic mechanism, based on mechanical forces acting from the surrounding tissues against the wall of lymphatic vessels, and by an intrinsic mechanism attributable to active spontaneous contractions of the lymphatic vessel muscle. Despite being heterogeneous, the mechanisms underlying the generation of spontaneous contractions share a common biochemical nature and are thus modulated by temperature. In this study, we challenged excised tissues from rat diaphragm and hindpaw, endowed with spontaneously contracting lymphatic vessels, to temperatures from 24°C (hindpaw) or 33°C (diaphragmatic vessels) to 40°C while measuring lymphatic contraction frequency (fc) and amplitude. Both vessel populations displayed a sigmoidal relationship between fc and temperature, each centered around the average temperature of surrounding tissue (36.7 diaphragmatic and 32.1 hindpaw lymphatics). Although the slope factor of the sigmoidal fit to the fc change of hindpaw vessels was 2.3°C·cycles-1·min-1, a value within the normal range displayed by simple biochemical reactions, the slope factor of the diaphragmatic lymphatics was 0.62°C·cycles-1·min-1, suggesting the added involvement of temperature-sensing mechanisms. Lymph flow calculated as a function of temperature confirmed the relationship observed on fc data alone and showed that none of the two lymphatic vessel populations would be able to adapt to the optimal working temperature of the other tissue district. This poses a novel question whether lymphatic vessels might not adapt their function to accommodate the change if exposed to a surrounding temperature, which is different from their normal condition.NEW & NOTEWORTHY This study demonstrates to what extent lymphatic vessel intrinsic contractility and lymph flow are modulated by temperature and that this modulation is dependent on the body district that the vessels belong to, suggesting a possible functional misbehavior should lymphatic vessels be exposed to a chronically different temperature.


Frontiers in Physiology | 2018

Fluid Osmolarity Acutely and Differentially Modulates Lymphatic Vessels Intrinsic Contractions and Lymph Flow

Eleonora Solari; Cristiana Marcozzi; Daniela Negrini; Andrea Moriondo

Lymph formation and propulsion rely on an extrinsic mechanism based on the forces that surrounding tissues exert upon the vessel wall and lumen and an intrinsic mechanism based on spontaneous, rhythmic contractions of the lymphatic muscle layer of collecting vessels. The two spontaneous pacemakers described in literature involve chloride-dependent depolarizations (STDs) and If-like currents, both giving rise to a variable contraction frequency (fc) of lymphatic vessels functional units (lymphangions). Several stimuli have been shown to modulate fc, such as temperature, shear stress, and several tissue chemical modulators (prostaglandins, norepinephrine, acetylcholine, substance P, and others). However, no detailed description is present in literature on the acute modulation of fc by means of osmolarity change of the surrounding interstitial space. Using a well-developed ex-vivo rat diaphragmatic preparation, in which osmolarity was changed by varying the concentration of D-mannitol in the perfusing solution and in later experiments the concentration of NaCl and then of Na+ and Cl− ions separately by ionic substitution, we provide detailed experimental evidences that a stepwise increase in osmolarity from control value (308 mOsm) up to 324 mOsm caused a reduction of fc down to ~-70% within the first 14 min, and that a stepwise decrease in osmolarity up to 290 mOsm induced an early fc increase to ~+34% of control, followed by a decline to an fc of ~-18% of control value. These variations were more dramatic when the same osmolarity changes were obtained by varying NaCl and/or Na+ or Cl− ions concentration, which caused an almost complete arrest of spontaneous contractility within 14 min from the application. Diastolic and systolic diameters and stroke volume were not affected by osmolarity changes, so that modulation of lymph flow closely followed that of fc. Modulation of lymph flow secondary to osmolarity changes is relevant if one considers that interstitial fluid balance is also dependent upon lymph drainage, and thus it is possible that, at least in the acute phase following variations of interstitial fluid osmolarity, its volume control might eventually be impaired due to the reduced or in the worst scenario null lymph drainage.


Italian journal of anatomy and embryology | 2015

Lung parenchima modifications after mechanical ventilation and fluid load.

Marina Protasoni; Cristiana Marcozzi; Andrea Moriondo; Eleonora Solari; Paolo Severgnini; Elena Caravà; Daniela Negrini; Carlo Dell’Orbo; Marcella Reguzzoni

Mechanical ventilation with or without positive pressure in the airways (PEEP) and with or without mild fluid load can cause some modification on the morphology of the lung matrix in the ventral and dorsal lung regions of supine healthy rats. To evaluate the differences between dorsal and ventral areas of the lungs after different strategies of ventilation we subdivided rats in two sets of animals, one without any intravenous infusion, the other one with intravenous infusion of phosphate buffered saline (PBS) maintained during all the mechanical ventilation. Each set was further subdivided in groups which underwent different ventilation strategies, vary- ing the end-expiratory pressure (0 or 5 mmH2O) and the spontaneous/mechanical breathing. At the morphological analysis no signs of parenchyma injury were collected in all the groups of either sets, although were evident differences in alveolar septa thick- ness: in all the not-infused groups submitted to mechanical ventilation was observed a thinning of the alveolar septa combined with a enlargement of the perivascular fluid cuffs both in ventral and dorsal regions. The infused specimens demonstrate a more congested parenchyma with irregular development of perivascular fluid cuffs around lung microvessels. In all groups, the maintaining of the PEEP during the mechanical ventilation induced significative corner and alveolar septa thinning respect to the controls, more accentuate in the ventral regions. In infused groups, we observed general alveolar septa and corner thickening, with reduction of the differ- ences between dorsal and ventral regions. Mechanical ventilation and fluid load may cause injuries to the lung parenchyma, mainly in the ventral region, injuries that seems to be reduced using a positive pres- sure on the airways, as the PEEP, which seemed to be protective for the extracellular matrix of the lung during the mechanical ventilation. The authors gratefully acknowledge the “Centro Grandi Attrezzature per la Ricer- ca Biomedica” of Insubria University for instruments availability.


American Journal of Physiology-heart and Circulatory Physiology | 2013

Spontaneous activity in peripheral diaphragmatic lymphatic loops.

Andrea Moriondo; Eleonora Solari; Cristiana Marcozzi; Daniela Negrini


VII Congresso Nazionale della Societa' Italiana di Emoreologia Clinica e Microcircolazione | 2017

Modulazione temperatura-dipendente delle contrattilita' spontanee dei vasi linfatici

Cristiana Marcozzi; Eleonora Solari; Daniela Negrini; Andrea Moriondo


The FASEB Journal | 2015

Involvement of HCN channels in diaphragmatic lymphatic pacemaking

Daniela Negrini; Cristiana Marcozzi; Eleonora Solari; Andrea Moriondo; Elena Bossi; Raffaella Cinquetti; Marcella Reguzzoni

Collaboration


Dive into the Eleonora Solari's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena Bossi

University of Insubria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge