Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eleonora Turrini is active.

Publication


Featured researches published by Eleonora Turrini.


Haematologica | 2013

Association between imatinib transporters and metabolizing enzymes genotype and response in newly diagnosed chronic myeloid leukemia patients receiving imatinib therapy.

Sabrina Angelini; Simona Soverini; Gloria Ravegnini; Matt J. Barnett; Eleonora Turrini; Mark Thornquist; Fabrizio Pane; Timothy P. Hughes; Deborah L. White; Jerald P. Radich; Dong-Wook Kim; Giuseppe Saglio; Daniela Cilloni; Ilaria Iacobucci; Giovanni Perini; Richard C. Woodman; Giorgio Cantelli-Forti; Michele Baccarani; Patrizia Hrelia; Giovanni Martinelli

Imatinib has so far been the first-choice treatment in chronic myeloid leukemia with excellent results. However, only a proportion of patients achieve major molecular response – hence the need to find biological predictors of outcome to select the optimal therapeutic strategy now that more potent inhibitors are available. We investigated a panel of 20 polymorphisms in seven genes, potentially associated with the pharmacogenetics of imatinib, in a subset of 189 patients with newly diagnosed chronic myeloid leukemia enrolled in the TOPS trial. The analysis included polymorphisms in the transporters hOCT1, MDR1, ABCG2, OCTN1, and OATP1A2, and in the metabolizing genes CYP3A4 and CYP3A5. In the overall population, the OCTN1 C allele (rs1050152), a simple combination of polymorphisms in the hOCT1 gene and another combination in the genes involved in imatinib uptake were significantly associated with major molecular response. The combination of polymorphisms in imatinib uptake was also significantly associated with complete molecular response. Analyses restricted to Caucasians highlighted the significant association of MDR1 CC (rs60023214) genotype with complete molecular response. We demonstrate the usefulness of a pharmacogenetic approach for stratifying patients with chronic myeloid leukemia according to their likelihood of achieving a major or complete molecular response to imatinib. This represents an attractive opportunity for therapy optimization, worth testing in clinical trials.


Mutation Research-reviews in Mutation Research | 2012

Natural isothiocyanates: genotoxic potential versus chemoprevention.

Carmela Fimognari; Eleonora Turrini; Lorenzo Ferruzzi; Monia Lenzi; Patrizia Hrelia

Isothiocyanates, occurring in many dietary cruciferous vegetables, show interesting chemopreventive activities against several chronic-degenerative diseases, including cancer, cardiovascular diseases, neurodegeneration, diabetes. The electrophilic carbon residue in the isothiocyanate moiety reacts with biological nucleophiles and modification of proteins is recognized as a key mechanism underlying the biological activity of isothiocyanates. The nuclear factor-erythroid-2-related factor 2 system, which orchestrates the expression of a wide array of antioxidant genes, plays a role in the protective effect of isothiocyanates against almost all the pathological conditions reported above. Recent emerging findings suggest a further common mechanism. Chronic inflammation plays a central role in many human diseases and isothiocyanates inhibit the activity of many inflammation components, suppress cyclooxygenase 2, and irreversibly inactivate the macrophage migration inhibitory factor. Due to their electrophilic reactivity, some isothiocyanates are able to form adducts with DNA and induce gene mutations and chromosomal aberrations. DNA damage has been demonstrated to be involved in the pathogenesis of various chronic-degenerative diseases of epidemiological relevance. Thus, the genotoxicity of the isothiocyanates should be carefully considered. In addition, the dose-response relationship for genotoxic compounds does not suggest evidence of a threshold. Thus, chemicals that are genotoxic pose a greater potential risk to humans than non-genotoxic compounds. Dietary consumption levels of isothiocyanates appear to be several orders of magnitude lower than the doses used in the genotoxicity studies and thus it is highly unlikely that such toxicities would occur in humans. However, the beneficial properties of isothiocyanates stimulated an increase of dietary supplements and functional foods with highly enriched isothiocyanate concentrations on the market. Whether such concentrations may exert a potential health risk cannot be excluded with certainty and an accurate evaluation of the toxicological profile of isothiocyanates should be prompted before any major increase in their consumption be recommended or their clinical use suggested.


Pharmacogenomics Journal | 2011

Impact of ABCC2 haplotypes on transcriptional and posttranscriptional gene regulation and function

Sandra Laechelt; Eleonora Turrini; A Ruehmkorf; W Siegmund; Ingolf Cascorbi; Sierk Haenisch

ABCC2 (MRP2) is an important export pump, expressed at tissue barriers. The genetic variants −24C>T, 1249G>A and 3972C>T are leading to inter-individual differences of bioavailability of various endogenous and exogenous compounds. Considering ABCC2 haplotypes, we investigated DNA–protein binding properties, mRNA secondary structure, mRNA stability, protein expression and transport activity in various cell lines and analyzed the bioavailability of talinolol in 24 healthy Caucasian volunteers; −24C>T had no clear influence on DNA–protein binding and the mRNA stability did not differ significantly. In transfected HEK293T/17 cells, haplotypes H9 (CGT), H10 (TGC) and H12 (TGT) had significantly lower protein expression, whereas H2 (CAC) exhibited significantly increased protein expression compared to the wild type (H1, CGC): 32.7±8.8, 73.1±6.3; 44.0±15.5 and 115.2±8.2%, respectively. This corresponded with efflux rates of the fluorescent dye glutathione-methylfluorescein in vitro and by trend with talinolol bioavailability in vivo. In conclusion our results show a haplotype-dependent influence on transport capacity of ABCC2, which seems to be mainly based on posttranscriptional modification of protein expression rather than transport rates.


Pharmacogenetics and Genomics | 2012

MicroRNA profiling in K-562 cells under imatinib treatment: influence of miR-212 and miR-328 on ABCG2 expression.

Eleonora Turrini; Sierk Haenisch; Sandra Laechelt; Tobias Diewock; Oliver Bruhn; Ingolf Cascorbi

Background Despite the enormous success of imatinib in chronic myeloid leukemia (CML), therapy resistance has emerged in a significant proportion of patients, partly because of the overexpression of ABC efflux transporters. Methods Using an array comprising 667 miRNAs, we investigated whether the expression of microRNAs (miRNAs) is altered in CML K-562 cells becoming resistant to increasing concentrations of imatinib. ABCB1 and ABCG2 mRNA (quantitative real-time PCR) and protein expression (western blot) were quantified under short-term and 4 months’ imatinib treatment. Interaction of miR-212 and miR-328 with ABCG2 was investigated by transfection experiments and reporter gene assays using respective miRNA precursors or miRNA inhibitors. Results Although ABCB1 protein was not expressed, ABCG2 protein was 7.2-fold elevated after long-term treatment with 0.3 µmol/l imatinib and decreased gradually at higher concentrations. miRNAs miR-212 and miR-328 were identified to correlate inversely with ABCG2 expression under these conditions. Short-term treatment also induced ABCG2 protein concentration dependently and caused a downregulation of miR-212, but not of miR-328 at all tested concentrations (P=0.050). Reporter gene assays confirmed miR-212 to target the 3′-UTR region of ABCG2. In contrast, transfection of anti-miR-212 revealed an upregulation of ABCG2 protein expression, whereas the effect of anti-miR-328 was weak. Conclusion Our study suggests an association of imatinib treatment, miRNA downregulation and ABCG2 overexpression, possibly contributing to the mechanisms involved in imatinib distribution and response in CML therapy.


Oxidative Medicine and Cellular Longevity | 2015

Potential Effects of Pomegranate Polyphenols in Cancer Prevention and Therapy

Eleonora Turrini; Lorenzo Ferruzzi; Carmela Fimognari

Cancer is the second leading cause of death and is becoming the leading one in old age. Vegetable and fruit consumption is inversely associated with cancer incidence and mortality. Currently, interest in a number of fruits high in polyphenols has been raised due to their reported chemopreventive and/or chemotherapeutic potential. Pomegranate has been shown to exert anticancer activity, which is generally attributed to its high content of polyphenols. This review provides a comprehensive analysis of known targets and mechanisms along with a critical evaluation of pomegranate polyphenols as future anticancer agents. Pomegranate evokes antiproliferative, anti-invasive, and antimetastatic effects, induces apoptosis through the modulation of Bcl-2 proteins, upregulates p21 and p27, and downregulates cyclin-cdk network. Furthermore, pomegranate blocks the activation of inflammatory pathways including, but not limited to, the NF-κB pathway. The strongest evidence for its anticancer activity comes from studies on prostate cancer. Accordingly, some exploratory clinical studies investigating pomegranate found a trend of efficacy in increasing prostate-specific antigen doubling time in patients with prostate cancer. However, the genotoxicity reported for pomegranate raised certain concerns over its safety and an accurate assessment of the risk/benefit should be performed before suggesting the use of pomegranate or its polyphenols for cancer-related therapeutic purposes.


Expert Opinion on Drug Metabolism & Toxicology | 2014

Natural compounds to overcome cancer chemoresistance: toxicological and clinical issues.

Eleonora Turrini; Lorenzo Ferruzzi; Carmela Fimognari

Introduction: Defects in initiating or executing cell death programs are responsible for cancer chemoresistance. The growing understanding of apoptotic programs suggests that compounds simultaneously inhibiting multiple signaling pathways might provide a better therapeutic outcome than that of individual inhibitors. Areas covered: Natural compounds can modulate different survival pathways, thus enhancing the therapeutic effects of anticancer treatments. This review provides an overview of the preclinical and clinical relevance of chemosensitization, giving special reference to curcumin (CUR) and sulforaphane (SFN) as agents to overcome apoptosis resistance against chemotherapy. Expert opinion: Even if CUR and SFN are common dietary constituents, they are characterized by several problems still unresolved and hampering their development as anticancer drugs. For a drug to be safe, it must be devoid of toxicity, and some studies conducted to date raises concern about CUR and SFN safety. Moreover, the efficacy of a drug, alone or in association, is usually determined by randomized, placebo-controlled, double-blind clinical trials. No such trials have shown CUR and SFN to be effective so far. Thus, caution should be exercised when suggesting the use of CUR or SFN for cancer-related therapeutic purpose, especially for very early stage of malignancy, or in patients who are undergoing chemotherapy.


PLOS ONE | 2011

Mitochondrial Pathway Mediates the Antileukemic Effects of Hemidesmus Indicus, a Promising Botanical Drug

Carmela Fimognari; Monia Lenzi; Lorenzo Ferruzzi; Eleonora Turrini; Paolo Scartezzini; Ferruccio Poli; Roberto Gotti; Alessandra Guerrini; Giovanni Carulli; Virginia Ottaviano; Giorgio Cantelli-Forti; Patrizia Hrelia

Background Although cancers are characterized by the deregulation of multiple signalling pathways, most current anticancer therapies involve the modulation of a single target. Because of the enormous biological diversity of cancer, strategic combination of agents targeted against the most critical of those alterations is needed. Due to their complex nature, plant products interact with numerous targets and influence several biochemical and molecular cascades. The interest in further development of botanical drugs has been increasing steadily and the FDA recently approved the first new botanical prescription drug. The present study is designed to explore the potential antileukemic properties of Hemidesmus indicus with a view to contributing to further development of botanical drugs. Hemidesmus was submitted to an extensive in vitro preclinical evaluation. Methodology/Principal Findings A variety of cellular assays and flow cytometry, as well as a phytochemical screening, were performed on different leukemic cell lines. We have demonstrated that Hemidesmus modulated many components of intracellular signaling pathways involved in cell viability and proliferation and altered the protein expression, eventually leading to tumor cell death, mediated by a loss of mitochondrial transmembrane potential and increased Bax/Bcl-2 ratio. ADP, adenine nucleotide translocator and mitochondrial permeability transition pore inhibitors did not reverse Hemidesmus-induced mitochondrial depolarization. Hemidesmus induced a significant [Ca2+]i raise through the mobilization of intracellular Ca2+ stores. Moreover, Hemidesmus significantly enhanced the antitumor activity of three commonly used chemotherapeutic drugs (methotrexate, 6-thioguanine, cytarabine). A clinically relevant observation is that its cytotoxic activity was also recorded in primary cells from acute myeloid leukemic patients. Conclusions/Significance These results indicate the molecular basis of the antileukemic effects of Hemidesmus and identify the mitochondrial pathways and [Ca2+]i as crucial actors in its anticancer activity. On these bases, we conclude that Hemidesmus can represent a valuable tool in the anticancer pharmacology, and should be considered for further investigations.


Toxins | 2016

Ellagitannins in Cancer Chemoprevention and Therapy

Tariq Ismail; Cinzia Calcabrini; Anna Rita Diaz; Carmela Fimognari; Eleonora Turrini; Elena Catanzaro; Saeed Akhtar; Piero Sestili

It is universally accepted that diets rich in fruit and vegetables lead to reduction in the risk of common forms of cancer and are useful in cancer prevention. Indeed edible vegetables and fruits contain a wide variety of phytochemicals with proven antioxidant, anti-carcinogenic, and chemopreventive activity; moreover, some of these phytochemicals also display direct antiproliferative activity towards tumor cells, with the additional advantage of high tolerability and low toxicity. The most important dietary phytochemicals are isothiocyanates, ellagitannins (ET), polyphenols, indoles, flavonoids, retinoids, tocopherols. Among this very wide panel of compounds, ET represent an important class of phytochemicals which are being increasingly investigated for their chemopreventive and anticancer activities. This article reviews the chemistry, the dietary sources, the pharmacokinetics, the evidence on chemopreventive efficacy and the anticancer activity of ET with regard to the most sensitive tumors, as well as the mechanisms underlying their clinically-valuable properties.


Expert Opinion on Drug Metabolism & Toxicology | 2014

Exploring the effects of isothiocyanates on chemotherapeutic drugs

Anna Minarini; Andrea Milelli; Carmela Fimognari; Elena Simoni; Eleonora Turrini; Vincenzo Tumiatti

Introduction: Chemoprevention has emerged as a promising strategy to reduce the risk and to control cancer. In this context, isothiocyanates (ITCs), found in abundance in the form of glucosinolates in cruciferous vegetables, have gained increasing consideration for their chemopreventive activity. ITCs exert their effects mainly by inducing carcinogen metabolism or by inhibiting tumor cell proliferation. Areas covered: In recent years, novel combination treatments, by coupling chemopreventive agents and typical chemotherapeutics, have been exploited to increase the antitumor activities. The aim of this article is to examine the foremost studies carried out, so far, on the effects of dietary and synthetic ITCs on different signaling pathways involved in the pharmacokinetics and pharmacodynamics of chemotherapeutic agents, in order to enhance their effectiveness. Expert opinion: Undoubtedly, the beneficial anticarcinogenic potential of ITCs, both singly and in combination, has emerged in in vitro and in vivo studies. However, only a few clinical trials have been carried out so far with ITCs, which try to better define both the pharmacokinetic and pharmacodynamic impacts in humans. More toxicological evaluations after long-term administration of ITCs in different species are required for the clinical development of ITCs as anticarcinogenic agents.


Journal of Ethnopharmacology | 2013

Hemidesmus indicus induces apoptosis as well as differentiation in a human promyelocytic leukemic cell line

Lorenzo Ferruzzi; Eleonora Turrini; S. Burattini; E. Falcieri; Ferruccio Poli; Manuela Mandrone; Gianni Sacchetti; Massimo Tacchini; Alessandra Guerrini; Roberto Gotti; Patrizia Hrelia; Giorgio Cantelli-Forti; Carmela Fimognari

ETHNOPHARMACOLOGICAL RELEVANCE The decoction of the roots of Hemidesmus indicus is widely used in the Indian traditional medicine for the treatment of blood diseases, dyspepsia, loss of taste, dyspnea, cough, poison, menorrhagia, fever, and diarrhea. Poly-herbal preparations containing Hemidesmus are often used by traditional medical practitioners for the treatment of cancer. The aim of this study was to investigate the cytodifferentiative, cytostatic and cytotoxic potential of a decoction of Hemidesmus indicuss roots (0.31-3 mg/mL) on a human promyelocytic leukemia cell line (HL-60). MATERIALS AND METHODS The decoction of Hemidesmus indicus was characterized by HPLC to quantify its main phytomarkers. Induction of apoptosis, cell-cycle analysis, levels of specific membrane differentiation markers were evaluated by flow cytometry. The analysis of cell differentiation by nitroblue tetrazolium (NBT) reducing activity, adherence to the plastic substrate, α-napthyl acetate esterase activity and morphological analysis was performed through light microscopy (LM) and transmission electron microscopy (TEM). RESULTS Starting from the concentration of 0.31 mg/ml, Hemidesmus indicus induced cytotoxicity and altered cell-cycle progression, through a block in the G0/G1 phase. The decoction caused differentiation of HL-60 cells as shown by NBT reducing activity, adherence to the plastic substrate, α-naphtyl acetate esterase activity, and increasing expression of CD14 and CD15. The morphological analysis by LM and TEM clearly showed the presence of granulocytes and macrophages after Hemidesmus indicus treatment. CONCLUSIONS The cytodifferentiating, cytotoxic and cytostatic activities of Hemidesmus indicus offers a scientific basis for its use in traditional medicine. Its potent antileukemic activity provides a pre-clinical evidence for its traditional use in anticancer pharmacology. Further experiments are worthwhile to determine the in vivo anticancer potential of this plant decoction and its components.

Collaboration


Dive into the Eleonora Turrini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge