Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elham Rostami is active.

Publication


Featured researches published by Elham Rostami.


Current Pharmaceutical Design | 2004

Microdialysis in neurointensive care.

Urban Ungerstedt; Elham Rostami

Microdialysis is a technique for sampling the chemistry of the interstitial fluid of tissues and organs in animal and man. It is minimally invasive and simple to perform in a clinical setting. Although microdialysis samples essentially all small molecular substances present in the interstitial fluid the use of microdialysis in neurointensive care has focused on markers of ischemia and cell damage. The lactate/pyruvate ratio is a well-known marker of changes in the redox state of cells caused by ischemia Glycerol is an integral component of cell membranes. Loss of energy due to ischemia eventually leads to an influx of calcium and a decomposition of cell membranes, which liberates glycerol into the interstitial fluid. Thus the lactate/pyruvate ratio and glycerol have become the most important markers of ischemia and cell membrane damage. While the primary insult at the site of the accident is beyond our control, secondary insults during intensive care should be avoided by all means. Therefore, the single most important finding from microdialysis studies is the dramatic difference in the vulnerability of the penumbra surrounding a lesion as compared to normal brain tissue allowing early detection of secondary insults after traumatic brain injury as well as the onset of vasospasm after subarachnoid hemorrhage.


NeuroImage | 2011

Mechanisms of blast induced brain injuries, experimental studies in rats

Mårten Risling; Stefan Plantman; Maria Angeria; Elham Rostami; Bo Mikael Bellander; Mette Kirkegaard; Ulf P. Arborelius; Johan Davidsson

Traumatic brain injuries (TBI) potentially induced by blast waves from detonations result in significant diagnostic problems. It may be assumed that several mechanisms contribute to the injury. This study is an attempt to characterize the presumed components of the blast induced TBI. Our experimental models include a blast tube in which an anesthetized rat can be exposed to controlled detonations of explosives that result in a pressure wave with a magnitude between 130 and 260 kPa. In this model, the animal is fixed with a metal net to avoid head acceleration forces. The second model is a controlled penetration of a 2mm thick needle. In the third model the animal is subjected to a high-speed sagittal rotation angular acceleration. Immunohistochemical labeling for amyloid precursor protein revealed signs of diffuse axonal injury (DAI) in the penetration and rotation models. Signs of punctuate inflammation were observed after focal and rotation injury. Exposure in the blast tube did not induce DAI or detectable cell death, but functional changes. Affymetrix Gene arrays showed changes in the expression in a large number of gene families including cell death, inflammation and neurotransmitters in the hippocampus after both acceleration and penetration injuries. Exposure to the primary blast wave induced limited shifts in gene expression in the hippocampus. The most interesting findings were a downregulation of genes involved in neurogenesis and synaptic transmission. These experiments indicate that rotational acceleration may be a critical factor for DAI and other acute changes after blast TBI. The further exploration of the mechanisms of blast TBI will have to include a search for long-term effects.


Frontiers in Neurology | 2012

A Model for Mild Traumatic Brain Injury that Induces Limited Transient Memory Impairment and Increased Levels of Axon Related Serum Biomarkers

Elham Rostami; Johan Davidsson; Kian Chye Ng; Jia Lu; Andrea Gyorgy; Johan Walker; Daniel Wingo; Stefan Plantman; Bo-Michael Bellander; Denes V. Agoston; Mårten Risling

Mild traumatic brain injury (mTBI) is one of the most common neuronal insults and can lead to long-term disabilities. mTBI occurs when the head is exposed to a rapid acceleration-deceleration movement triggering axonal injuries. Our limited understanding of the underlying pathological changes makes it difficult to predict the outcome of mTBI. In this study we used a scalable rat model for rotational acceleration TBI, previously characterized for the threshold of axonal pathology. We have analyzed whether a TBI just above the defined threshold would induce any detectable behavioral changes and/or changes in serum biomarkers. The effect of injury on sensory motor functions, memory and anxiety were assessed by beam walking, radial arms maze and elevated plus maze at 3–7 days following TBI. The only behavioral deficits found were transient impairments in working and reference memory. Blood serum was analyzed at 1, 3, and 14 days after injury for changes in selected protein biomarkers. Serum levels of neurofilament heavy chain and Tau, as well as S100B and myelin basic protein showed significant increases in the injured animals at all time points. No signs of macroscopic injuries such as intracerebral hematomas or contusions were found. Amyloid precursor protein immunostaining indicated axonal injuries at all time points analyzed. In summary, this model mimics some of the key symptoms of mTBI, such as transient memory impairment, which is paralleled by an increase in serum biomarkers. Our findings suggest that serum biomarkers may be used to detect mTBI. The model provides a suitable foundation for further investigation of the underlying pathology of mTBI.


PLOS ONE | 2011

BDNF polymorphism predicts general intelligence after penetrating traumatic brain injury

Elham Rostami; Frank Krueger; Serguei Zoubak; Olga Dal Monte; Vanessa Raymont; Matteo Pardini; Colin A. Hodgkinson; David Goldman; Mårten Risling; Jordan Grafman

Neuronal plasticity is a fundamental factor in cognitive outcome following traumatic brain injury. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, plays an important role in this process. While there are many ways to measure cognitive outcome, general cognitive intelligence is a strong predictor of everyday decision-making, occupational attainment, social mobility and job performance. Thus it is an excellent measure of cognitive outcome following traumatic brain injury (TBI). Although the importance of the single-nucleotide polymorphisms polymorphism on cognitive function has been previously addressed, its role in recovery of general intelligence following TBI is unknown. We genotyped male Caucasian Vietnam combat veterans with focal penetrating TBI (pTBI) (n = 109) and non-head injured controls (n = 38) for 7 BDNF single-nucleotide polymorphisms. Subjects were administrated the Armed Forces Qualification Test (AFQT) at three different time periods: pre-injury on induction into the military, Phase II (10–15 years post-injury, and Phase III (30–35 years post-injury). Two single-nucleotide polymorphisms, rs7124442 and rs1519480, were significantly associated with post-injury recovery of general cognitive intelligence with the most pronounced effect at the Phase II time point, indicating lesion-induced plasticity. The genotypes accounted for 5% of the variance of the AFQT scores, independently of other significant predictors such as pre-injury intelligence and percentage of brain volume loss. These data indicate that genetic variations in BDNF play a significant role in lesion-induced recovery following pTBI. Identifying the underlying mechanism of this brain-derived neurotrophic factor effect could provide insight into an important aspect of post-traumatic cognitive recovery.


Brain Research | 2014

Alteration in BDNF and its receptors, full-length and truncated TrkB and p75NTR following penetrating traumatic brain injury

Elham Rostami; Frank Krueger; Stefan Plantman; Johan Davidsson; Denes V. Agoston; Jordan Grafman; Mårten Risling

The evidence that BDNF is involved in neuroprotection, neuronal repair and recovery after traumatic brain injury (TBI) is substantial. We have previously shown that the polymorphism of the human BDNF gene predicts cognitive recovery and outcome following penetrating TBI. The distribution of expression of BDNF and its receptors after penetrating TBI has not been investigated. In this study we examined the expression of these genes in a rat model of penetrating TBI. The injury is produced by a controlled penetration of a 2mm thick needle-shaped object, which is accelerated with a pellet from an air gun. We used in situ hybridization and investigated the mRNA expression of BDNF and its receptors: the full-length and the truncated TrkB and p75(NTR), from 1 day to 8 weeks following penetrating TBI. In addition, the protein level of BDNF in frontal cortex and hippocampus was measured by reverse phase protein microarray (RPPM). The mRNA expression of BDNF and its receptors decreased in the hippocampus in the border zone ipsilateral to the injury while there was an increase in mRNA expression at the contralateral side. The increase in BDNF mRNA expression in the hippocampus was sustained for 2 weeks following injury, with the highest expression noted in the CA3 cell layer. Furthermore, the protein analysis by RPPM showed increased levels of BDNF in the frontal cortex and the hippocampus up to 2 weeks after TBI. At 8 weeks following injury there was an intense labeling of the truncated TrkB receptor and the p75(NTR) in the area surrounding the cavity. Our study is the first report on the expression of BDNF and its receptors following penetrating TBI and suggests that their expression is altered long after the acute phase of injury. Further studies are needed to investigate if the late expressions of these receptors are beneficial or deleterious. In either case it indicates the possibility to influence the recovery after brain injury during the chronic phase and the development of treatments that may improve the outcome of TBI patients.


Frontiers in Neurology | 2014

Imaging of cerebral blood flow in patients with severe traumatic brain injury in the neurointensive care

Elham Rostami; Henrik Engquist; Per Enblad

Ischemia is a common and deleterious secondary injury following traumatic brain injury (TBI). A great challenge for the treatment of TBI patients in the neurointensive care unit (NICU) is to detect early signs of ischemia in order to prevent further advancement and deterioration of the brain tissue. Today, several imaging techniques are available to monitor cerebral blood flow (CBF) in the injured brain such as positron emission tomography (PET), single-photon emission computed tomography, xenon computed tomography (Xenon-CT), perfusion-weighted magnetic resonance imaging (MRI), and CT perfusion scan. An ideal imaging technique would enable continuous non-invasive measurement of blood flow and metabolism across the whole brain. Unfortunately, no current imaging method meets all these criteria. These techniques offer snapshots of the CBF. MRI may also provide some information about the metabolic state of the brain. PET provides images with high resolution and quantitative measurements of CBF and metabolism; however, it is a complex and costly method limited to few TBI centers. All of these methods except mobile Xenon-CT require transfer of TBI patients to the radiological department. Mobile Xenon-CT emerges as a feasible technique to monitor CBF in the NICU, with lower risk of adverse effects. Promising results have been demonstrated with Xenon-CT in predicting outcome in TBI patients. This review covers available imaging methods used to monitor CBF in patients with severe TBI.


Frontiers in Neurology | 2014

Glucose and the injured brain-monitored in the neurointensive care unit.

Elham Rostami

Brain has a continuous demand for energy that is met by oxidative metabolism of oxygen and glucose. This demand is compromised in the injured brain and if the inadequate supply persists it will lead to permanent tissue damage. Zero values of cerebral glucose have been associated with infarction and poor neurological outcome. Furthermore, hyperglycemia is common in patients with neurological insults and associated with poor outcome. Intensive insulin therapy (IIT) to control blood glucose has been suggested and used in neurointensive care with conflicting results. This review covers the studies reporting on monitoring of cerebral glucose with microdialysis in patients with traumatic brain injury (TBI), subarachnoid hemorrhage (SAH) and ischemic stroke. Studies investigating IIT are also discussed. Available data suggest that low cerebral glucose in patients with TBI and SAH provides valuable information on development of secondary ischemia and has been correlated with worse outcome. There is also indication that the location of the catheter is important for correlation between plasma and brain glucose. In conclusion considering catheter location, monitoring of brain glucose in the neurointensive care not only provides information on imminent secondary ischemia it also reveals the effect of peripheral treatment on the injured brain.


Frontiers in Neurology | 2011

On Acute Gene Expression Changes after Ventral Root Replantation

Mårten Risling; Thomas Ochsman; Thomas Carlstedt; Hans Lindå; Stefan Plantman; Elham Rostami; Maria Angeria; Mattias K. Sköld

Replantation of avulsed spinal ventral roots has been show to enable significant and useful regrowth of motor axons in both experimental animals and in human clinical cases, making up an interesting exception to the rule of unsuccessful neuronal regeneration in central nervous system. Compared to avulsion without repair, ventral root replantation seems to rescue lesioned motoneurons from death. In this study we have analyzed the acute response to ventral root avulsion and replantation in adult rats with gene arrays combined with cluster analysis of gene ontology search terms. The data show significant differences between rats subjected to ventral replantation compared to avulsion only. Even though number of genes related to cell death is similar in the two models after 24 h, we observed a significantly larger number of genes related to neurite growth and development in the rats treated with ventral root replantation, possibly reflecting the neuroregenerative capacity in the replantation model. In addition, an acute inflammatory response was observed after avulsion, while effects on genes related to synaptic transmission were much more pronounced after replantation than after avulsion alone. These data indicate that the axonal regenerative response from replantation is initiated at an earlier stage than the possible differences in terms of neuron survival. We conclude that this type of analysis may facilitate the comparison of the acute response in two types of injury.


Journal of Neurotrauma | 2013

The terminal pathway of the complement system is activated in focal penetrating but not in mild diffuse traumatic brain injury

Elham Rostami; Johan Davidsson; Andrea Gyorgy; Denes V. Agoston; Mårten Risling; Bo-Michael Bellander

The complement system plays an important role in the inflammatory response activated by many central nervous system disorders. However, its significance in traumatic diffuse traumatic axonal injury (TAI) is not fully known. Here we analyze the complement activity in two rat models of traumatic brain injury (TBI); a focal penetration injury (pen-TBI) and a rotational acceleration injury (rot-TBI) that leads to a mild TAI. We used in situ hybridization to examine the distribution of mRNA for C1q and C3 and immunohistochemistry to examine the presence of the C3 protein and C5b-9 complex at 1-5 days after injury. We found a time-dependent complement activity in both models. However, the responses caused by the two models were different. We detected C5b-9 surrounding the cavity in pen-TBI, but C5b-9 was not found in the rot-TBI. Our findings suggest that the terminal complement pathway is progressed to the formation of the C5b-9 membrane attack complex only in the penetrating TBI but not in isolated TAI model. This indicates that the complement activation does not lead to membrane-damaging effects and a subsequent secondary axotomy in TAI by the terminal complex C5b-9. The role of complement activation in TAI is unclear, but might indicate an alternative function following rot-TBI, such as opsonizing the synapses for elimination.


Respiratory Physiology & Neurobiology | 2013

Brain metabolism and oxygenation in healthy pigs receiving hypoventilation and hyperoxia

Elham Rostami; David Rocksén; Neda Rajamand Ekberg; Michel Goiny; Urban Ungerstedt

Modulation in ventilatory settings is one of the approaches and interventions used to treat and prevent secondary brain damage after traumatic brain injury (TBI). Here we investigate the effect of hyperoxia in combination with hypoventilation on brain oxygenation, metabolism and intracranial pressure. Twelve pigs were divided into three groups; group1-100% hyperoxia (n=4), group 2-100% hyperoxia and 20% decrease in minute volume (MV) (n=4) and group 3-100% hyperoxia and 50% decrease in MV (n=4). Neither of the ventilator settings affected the lactate/pyruvate ratio significantly. However, there was a significant decrease of brain lactate (2.6±1.7 to 1.8±1.6mM) and a rapid and marked increase in brain oxygenation (7.9±0.7 to 61.3±17.6mmHg) in group 3. Intracranial pressure (ICP) was not significantly affected in this group, however, the ICP increased significantly in group 2 with 100% hyperoxia plus 20% reduction in minute volume. We conclude that hyperoxia in combination with 50% decrease in MV showed pronounced increase in partial brain oxygen tension (pbrO2) and decrease in brain lactate. The ventilatory modification, used in this study should be considered for further investigation as a possible therapeutic intervention for TBI patients.

Collaboration


Dive into the Elham Rostami's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johan Davidsson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Gyorgy

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo-Michael Bellander

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge