Elham Satvat
Wilfrid Laurier University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Elham Satvat.
Neurobiology of Aging | 2011
Diano F. Marrone; Allison Adams; Elham Satvat
One prominent impairment associated with aging is a deficit in the ability of the hippocampus to form stable contextual representations. Place-specific firing in granule cells of the fascia dentata (FD) is thought to aid the formation of multiple stable memory representations by disambiguating similar experiences (a process termed pattern separation), such as when an animal repeatedly enters similar environments or contexts. Using zif268/egr1 as a marker of cellular activity, we show that aged animals, which have altered place maps in other areas of the hippocampal formation, also show altered granule cell activity during multiple visits to similar environments. That is, the FD of aged animals is more likely to recruit distinct granule cell populations, and thus show greater pattern separation, during two visits to similar (or even the same) environments. However, if two highly distinct environments are visited, this age-related increase in pattern separation is no longer apparent. Moreover, increased pattern separation in similar environments correlates with decline in the ability of aged animals to disambiguate similar contexts in a sequential spatial recognition task.
Pharmacology, Biochemistry and Behavior | 2009
Laurie A. Manwell; Elham Satvat; Stefan T. Lang; Craig P. Allen; Francesco Leri; Linda A. Parker
Converging evidence suggests that the endogenous cannabinoid (eCB) system is involved in extinction of learned behaviours. Using operant and classical conditioning procedures, the potential of the fatty acid amide (FAAH) inhibitor, URB-597, and the CB(1) antagonist/inverse agonist, SR141716, to promote and inhibit (respectively) extinction of learned responses previously motivated by either rewarding or aversive stimuli was investigated. In the operant conditioning procedure (Expt. 1), rats previously trained to lever press for sucrose reward were administered URB-597 (0.3 mg/kg) or the CB(1) antagonist/inverse agonist SR141716 (2.5 mg/kg) prior to each of three extinction trials. In the conditioned floor preference procedure (Expts 2a-d), rats trained to associate morphine with one of two distinctive floors were administered one of several doses of the CB(1) antagonist/inverse agonist, AM-251 (Expt 2a) or URB-597 (Expt 2b and 2d) prior to each extinction/test trial wherein a choice of both floors was presented and prior to forced exposure to each floor (Expt 2c). In the conditioned floor aversion procedure (Expt. 3), rats trained to associate a naloxone-precipitated morphine withdrawal with a floor cue were administered URB-597 or SR141716 prior to each of 24 extinction/testing trials. URB-597 did not promote and SR141716 did not reduce extinction rates for sucrose reward-induced operant responding (Expt. 1) or morphine-induced conditioned floor preference (Expts. 2a-d). In contrast, URB-597 facilitated, whereas SR141716 impaired, extinction of the conditioned floor aversion (Expt. 3). These data support previous reports that the eCB system selectively facilitates extinction of aversive memories. URB-597 may prove useful in targeting extinction of aversively motivated behaviours.
The Journal of Neuroscience | 2011
Elham Satvat; Brandy Schmidt; Melissa Argraves; Diano F. Marrone; Etan J. Markus
Granule cells of the dentate gyrus (DG) are thought to disambiguate similar experiences—a process termed pattern separation. Using zif268 as a marker of cellular activity, DG function was assessed in rats performing two tasks: a place task (go east) and a response task (turn right). As these tasks occurred within the same physical space (a plus maze) without any physical cue to indicate the correct strategy in a given trial, this scenario critically involves disambiguation of task demands and presumably pattern separation. Performance of the two tasks induced zif268 expression in distinct populations of granule cells within the suprapyramidal but not the infrapyramidal blade of the DG. Repeated performance of the same task (i.e., two response-task trials or two place-task trials), however, elicited zif268 expression within a single subset of the granule cell population. This differential transcription pattern shows that the retrieval of different behavioral strategies or mnemonic demands recruit distinct ensembles of granule cells, possibly to prevent interference between memories of events occurring within the same physical space to permit the selection of appropriate responses.
Neurobiology of Aging | 2012
Diano F. Marrone; Elham Satvat; Michael J. Shaner; Paul F. Worley; Carol A. Barnes
One prominent component of aging is a defect in memory stabilization. To understand how the formation of enduring memories is altered in the aged brain, long-term markers of the biological events that may mediate memory consolidation were used to examine the activity dynamics of hippocampal circuits over extended intervals. The immediate early gene Arc, which is implicated in both durable memory and synaptic plasticity, is expressed in the fascia dentata (FD) for long periods following behavioral experience. To test the hypothesis that aging alters long-term Arc transcription in the FD, a region critical for spatial memory and impaired with progressive age, young and aged rats explored a novel environment twice, separated by an 8-hour interval, and FD Arc transcription was assessed. Relative to young rats, (a) fewer granule cells in the aged FD transcribe arc 8 hours after spatial exploration, and (b) this decrease is correlated with impaired spatial memory. These findings are consistent with behavioral evidence of age-related decline in hippocampal-dependent memory processing long after an event is to be remembered, and reaffirm the integral role of the FD in the neural circuits supporting durable memory.
Physiology & Behavior | 2006
Elham Satvat; Roelof Eikelboom
In adult rats, running wheel introduction induces a 7 to 10 day feeding suppression, either due to a learned conditioned taste avoidance or to the direct unconditioned effects of wheel running. The three experiments investigated the effects of wheel introduction on familiar (rat chow) and novel (24% sucrose solution) food consumption (Experiment 1), and then explored how alternate-day wheel access affected sucrose consumption when it was novel (Experiment 2) or familiar (Experiment 3). When paired with wheel introduction the consumption of a novel sucrose solution was completely suppressed for an extended period, whether the rats had continuous or alternate-day wheel access. In contrast, familiar food consumption was suppressed, for a limited period, only on wheel days. When rats were pre-exposed to the sucrose, consumption was suppressed only on wheel days. The results suggest that in addition to the direct unconditioned effects of wheel running on feeding, learning factors may influence the feeding suppression observed and thus wheel introduction supports a learned conditioned taste avoidance.
Hippocampus | 2012
Brandy Schmidt; Elham Satvat; Melissa Argraves; Etan J. Markus; Diano F. Marrone
Place cells in the hippocampus can maintain multiple representations of a single environment and respond to physical and/or trajectory changes by remapping. Within the hippocampus there are anatomical, electrophysiological, and behavioral dissociations between the dorsal and ventral hippocampus and within dorsal CA1. Arc expression was used to measure the recruitment of ensembles across different hippocampal subregions in rats trained to utilize two different cognitive strategies while traversing an identical trajectory. This behavioral paradigm allowed for the measurement of remapping in the absence of changes in external cues, trajectory traversed (future/past), running speed, motivation, or different stages of learning. Changes in task demands induced remapping in only some hippocampal regions: reorganization of cell ensembles was observed in dorsal CA1 but not in dorsal CA3. Moreover, a gradient was found in the degree of remapping within dorsal CA1 that corresponds to entorhinal connectivity to this region. Remapping was not seen in the ventral hippocampus: neither ventral CA1 nor CA3 exhibited ensemble changes with different cognitive demands. This contrasts with findings of remapping in both the dorsal and ventral dentate gyrus using this task. The results suggest that the dorsal pole of the hippocampus is more sensitive to changes in task demands.
Neuropharmacology | 2012
Elham Satvat; Ali Gheidi; Sarah Voll; Irina V. Odintsova; Diano F. Marrone
It is well known that antidepressants both improve mood and increase the rate at which the dentate gyrus (DG) generates new neurons. In addition to the implications of neurogenesis for mood regulation, the production and survival of granule cells has also been implicated in learning and memory. Despite this evidence, the results of studies on the effect of antidepressants on memory have been mixed. A critical piece of data that may be missing from previous studies, however, is insight into (a) the location that newborn neurons migrate to following fluoxetine administration and (b) their ability to express normal patterns of activity-related genes. Here we demonstrate a finding that may resolve the discrepancy in the effects fluoxetine-induced neurogenesis on mood and memory: after 5 weeks delay, the net additional neurons generated in animals given the antidepressant fluoxetine during treatment are functionally normal, but preferentially accumulate (due to changes in migration and/or survival) in an area of the DG that is not recruited by spatial memory tasks.
Hippocampus | 2014
Diano F. Marrone; Elham Satvat; Irina V. Odintsova; Ali Gheidi
Classic models of the hippocampus uniformly ascribe pattern completion to CA3, but recent data suggest CA3c (enclosed by the dentate gyrus) may act in a manner more consistent with the dentate and aid in pattern separation. The ideal test for functional distinction within CA3, however, is to compare the responses in these regions in the same animal in multiple contexts. To accomplish this, animals visited two contexts with varying degrees of similarity and the pattern of repeated Arc expression was examined across the pyramidal cell layer. Under conditions of partial cue change, responses in CA3c are far more distinct than CA3a/b, consistent with evidence for functional diversity along the transverse axis of CA3. These data add to the mounting evidence that “classic” roles ascribed to CA3 in learning and memory require re‐evaluation.
Journal of Neuroscience Research | 2012
Ali Gheidi; Elham Satvat; Diano F. Marrone
The patterns of ensemble activity in the hippocampal formation during wakeful, attentive behavior are recapitulated during subsequent resting states. This replay of activity has also been found in several brain regions across many species, indicating a very general biological phenomenon. Concomitantly, transcription of immediate‐early genes (IEGs) such as Arc also reoccurs in the same hippocampal neurons, suggesting that IEGs contribute to “off‐line” consolidation. If continued IEG expression during rest reflects a correlate of ensemble replay, then the same generality should be observed in IEG transcription patterns. This hypothesis was tested by examining Arc in F344 rats engaging in spatial exploration alongside a rest episode. The probability that an individual neuron participates in “constitutive” Arc expression during rest is increased by recent experience in multiple cortical regions as well as across the septal and temporal poles of the hippocampus, consistent with memory trace reactivation. That is, neurons that were recently active during spatial exploration are preferentially recruited into further Arc expression during subsequent rest. The continued Arc expression, however, occurs in only a small fraction of the cells that were engaged in transcription during previous behavior. This fraction is greatest in CA3 and progressively decreases in CA1, superficial, and deep cortical layers and is consistent with the idea that consolidation occurs rapidly in the hippocampus (centering on the CA3 recurrent network) while changes are much more gradual in neocortical synaptic networks.
Synapse | 2016
Amelia L. Gallitano; Elham Satvat; Mario Gil; Diano F. Marrone
The dentate gyrus (DG) is a hippocampal region that has long been characterized as a critical mediator of enduring memory formation and retrieval. As such, there is a wealth of studies investigating this area. Most of these studies have either treated the DG as a homogeneous structure, or examined differences in neurons along the septal‐temporal axis. Recent data, however, have indicated that a functional distinction exists between the suprapyramidal and infrapyramidal blades of the DG, with the former showing more robust responses during spatial tasks. To date, few anatomical studies have addressed this functional gradient in rats, and no study has done so in the mouse. To address this, we investigated dendritic morphology and spine density in hippocampal granule cells of rats and mice using the Golgi‐Cox technique. We find that granule cells from the suprapyramidal blade of the DG contain greater dendritic material in the region receiving spatial information from the medial perforant path. This provides a potential anatomical substrate for the asymmetric response of the DG to spatial input. Synapse 70:277–282, 2016.