Eli Aghion
Ben-Gurion University of the Negev
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eli Aghion.
Acta Biomaterialia | 2013
Galit Katarivas Levy; Eli Aghion
The effect of diffusion coating of Nd on the corrosion performance of Mg-1.2%Nd-0.5%Y-0.5%Zr-0.4%Ca alloy (EW10X04) used as a new structural material for biodegradable implants was evaluated in a simulated physiological electrolyte. The initial Nd layer with a thickness of 1 μm was obtained by a physical vapor deposition process in an electron gun evaporator. This was followed by a diffusion coating process carried out at high temperature in a protective atmosphere. The microstructure of the diffusion coating system was examined using scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy analysis. The corrosion resistance was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy in a simulated physiological electrolyte in the form of 0.9% NaCl solution saturated with Mg(OH)2. The results of the corrosion tests clearly demonstrated that the corrosion resistance of the alloy with the diffusion coating layer was significantly improved compared to the base alloy. This was mainly due to the relatively continuous network of the secondary passive phase Mg41Nd5 that acts as an effective corrosion barrier and the beneficial effect of enriching the oxide film with Nd and Nd oxides such as Nd2O3 and Nd6O11.
Journal of Materials Science | 2009
Eli Aghion; N. Lulu
The skin characteristics of die cast AZ91 magnesium alloys and their consequent environmental behavior were evaluated in correlation with die cast wall thickness. The metallurgical examination of the skins was carried out using scanning electron microscopy (SEM), SPX-surface analyses with ESCALAB 250 apparatus, and X-ray diffraction analysis. The corrosion behavior of the skins was evaluated by immersion tests and by potentiodynamic polarization measurements in 3.5% NaCl solution saturated with Mg (OH)2 at room temperature. The results show that the corrosion resistance of die cast specimens with relatively greater thickness was improved compared to the corrosion resistance of thin wall specimens. This was explained in light of the obtained skin characteristics, mainly in terms of aluminum content, β phase (Mg17Al12) quantity and morphology, and level of porosity.
Materials Science and Engineering: C | 2015
Orly Hakimi; Eli Aghion; Jeremy Goldman
The high corrosion rate of magnesium (Mg) and Mg-alloys precludes their widespread acceptance as implantable biomaterials. Here, we investigated the potential for rapid solidification (RS) to increase the stress corrosion cracking (SCC) resistance of a novel Mg alloy, Mg-6%Nd-2%Y-0.5%Zr (EW62), in comparison to its conventionally cast (CC) counterpart. RS ribbons were extrusion consolidated in order to generate bioimplant-relevant geometries for testing and practical use. Microstructural characteristics were examined by SEM. Corrosion rates were calculated based upon hydrogen evolution during immersion testing. The surface layer of the tested alloys was analyzed by X-ray photoelectron spectroscopy (XPS). Stress corrosion resistance was assessed by slow strain rate testing and fractography. The results indicate that the corrosion resistance of the RS alloy is significantly improved relative to the CC alloy due to a supersaturated Nd enrichment that increases the Nd2O3 content in the external oxide layer, as well as a more homogeneous structure and reduced grain size. These improvements contributed to the reduced formation of hydrogen gas and hydrogen embrittlement, which reduced the SCC sensitivity relative to the CC alloy. Therefore, EW62 in the form of a rapidly solidified extruded structure may serve as a biodegradable implant for biomedical applications.
Journal of Materials Engineering and Performance | 2009
Eli Aghion; Nir Moscovitch; Amir Arnon
MRI 230D was specially developed to overcome the high-temperature limitations of conventionally die-cast magnesium alloys. This innovative alloy was primarily developed for the automotive industry, mainly for power-train applications operating under high-temperature conditions. The present article aims at evaluating the die-casting characteristics of MRI 230D in comparison with conventional AZ91D Mg alloy. These characteristics are used to evaluate the applicability of this alloy for die-casting operations which are essential for mass production.
Materials Science and Engineering: C | 2016
Galit Katarivas Levy; Yvonne Ventura; Jeremy Goldman; Razi Vago; Eli Aghion
Porous Mg scaffolds are considered as potential bone growth promoting materials. Unfortunately, the high rate of biocorrosion inherent to Mg alloys may cause a premature loss of mechanical strength, excessive evolution of hydrogen gas, and a rapidly shifting surface topography, all of which may hinder the ability of native cells to attach and grow on the implant surface. Here we investigated the cell cytotoxicity effects during corrosion of a novel magnesium alloy, EW10X04 (Mg-1.2%Nd-0.5%Y-0.5%Zr-0.4%Ca), following diffusion coating (DC) and heat treatment to reduce the corrosion rate. Cells were exposed either to corrosion products or to the corroding scaffold surface, in vitro. The microstructure characterization of the scaffold surface was carried out by scanning electron microscopy (SEM) equipped with a Noran energy dispersive spectrometer (EDS). Phase analyses were obtained by X-ray diffraction (XRD). We found that cell viability, growth, and adhesion were all improved when cultured on the EW10X04+DC surface or under corrosion product extracts due to lower corrosion rates relative to the EW10X04 control samples. It is therefore believed that the tested alloy after Nd coating and heat treatment may introduce a good balance between its biodegradation characteristics and cytotoxic effects towards cells.
Journal of Biomedical Materials Research Part B | 2015
Eli Aghion; L. Jan; Louisa Meshi; Jeremy Goldman
Magnesium (Mg) and Mg-alloys are being considered as implantable biometals. Despite their excellent biocompatibility and good mechanical properties, their rapid corrosion is a major impediment precluding their widespread acceptance as implantable biomaterials. Here, we investigate the potential for rapid solidification to increase the corrosion resistance of Mg alloys. To this end, the effect of rapid solidification on the environmental and stress corrosion behavior of the AZ80 Mg alloy vs. its conventionally cast counterpart was evaluated in simulated physiological electrolytes. The microstructural characteristics were examined by optical microscopy, SEM, TEM, and X-ray diffraction analysis. The corrosion behavior was evaluated by immersion, salt spraying, and potentiodynamic polarization. Stress corrosion resistance was assessed by Slow Strain Rate Testing. The results indicate that the corrosion resistance of rapidly solidified ribbons is significantly improved relative to the conventional cast alloy due to the increased Al content dissolved in the α-Mg matrix and the correspondingly reduced presence of the β-phase (Mg17 Al12 ). Unfortunately, extrusion consolidated solidified ribbons exhibited a substantial reduction in the environmental performance and stress corrosion resistance. This was mainly attributed to the detrimental effect of the extrusion process, which enriched the iron impurities and increased the internal stresses by imposing a higher dislocation density. In terms of immersion tests, the average corrosion rate of the rapidly solidified ribbons was <0.4 mm/year compared with ∼2 mm/year for the conventionally cast alloy and 26 mm/year for the rapidly solidified extruded ribbons.
Journal of Materials Science | 1998
M. Fass; D. Eliezer; Eli Aghion; F. H. Froes
Rapidly solidified (RS) Al–Fe–Ce alloys were prepared by melt spinning. The phases present and the thermal stability, at temperatures up to 500 °C, were then followed by X-ray analysis, chemistry, hardness and thermal analysis techniques. The results obtained indicated that the alloys studied have enhanced mechanical properties compared to commercial aluminium alloys and castings of the same alloy compositions, and the RS alloy also exhibit good stability up to about 300 °C; a result of stable second phase particles. It is suggested that these results indicate that there are two mechanisms responsible for the hardening and stability of the RS alloys: solid solution strengthening at lower temperatures, and semicoherent particles formed from supersaturated solid solution at higher temperature. The maximum hardness, after 2 h ageing occurred at about 300 °C. At higher temperatures the dispersed phase became incoherent with a dramatic loss in hardness.
Archive | 2006
Eli Aghion; Gilad Golub
One of the features of the magnesium industry is the wide variety of production processes. Relative to an industry, which has been manufacturing a product commercially for close to one hundred years, it is somewhat strange that there are over 10 different processes for producing magnesium. Unlike many other industries, there is no one particular dominant technology used for most of the world’s production. The large number of production technologies stems from the differences in basic parameters of the production processes. Below are the basic parameters, which differentiate the various production methods.
Journal of Materials Science: Materials in Medicine | 2017
Galit Katarivas Levy; Avi Leon; Alon Kafri; Yvonne Ventura; Jaroslaw Drelich; Jeremy Goldman; Razi Vago; Eli Aghion
Increasing interest in biodegradable metals (Mg, Fe, and Zn) as structural materials for orthopedic and cardiovascular applications mainly relates to their promising biocompatibility, mechanical properties and ability to self-remove. However, Mg alloys suffer from excessive corrosion rates associated with premature loss of mechanical integrity and gas embolism risks. Fe based alloys produce voluminous corrosion products that have a detrimental effect on neighboring cells and extracellular matrix. In contrast, Zn does not appear to exhibit a harmful mode of corrosion. Unfortunately, pure zinc possesses insufficient mechanical strength for biomedical structural applications. The present study aimed at examining the potential of two new zinc based alloys, Zn-1%Mg and Zn-1%Mg-0.5%Ca to serve as structural materials for biodegradable implants. This examination was carried out under in vitro conditions, including immersion testing, potentiodynamic polarization analysis, electrochemical impedance spectroscopy (EIS), and stress corrosion cracking (SCC) assessments in terms of slow strain rate testing (SSRT). In order to assess the cytotoxicity of the tested alloys, cell viability was evaluated indirectly using Saos-2 cells. The results demonstrate that both zinc alloys can be considered as potential candidates for biodegradable implants, with a relative advantage to the Zn-1%Mg alloy in terms of its corrosion resistance and SCC performance.Graphical abstract
Materials Science and Engineering: C | 2016
Orly Hakimi; Yvonne Ventura; Jeremy Goldman; Razi Vago; Eli Aghion
Magnesium alloys have been widely investigated for biodegradable medical applications. However, the shielding of harmful cells (eg. bacteria or tumorous cells) from immune surveillance may be compounded by the increased porosity of biodegradable materials. We previously demonstrated the improved corrosion resistance and mechanical properties of a novel EW62 (Mg-6%Nd-2%Y-0.5%Zr)) magnesium alloy by rapid solidification followed by extrusion (RS) compared to its conventional counterpart (CC). The present in vitro study evaluated the influence of rapid solidification on cytotoxicity to murine osteosarcoma cells. We found that CC and RS corrosion extracts significantly reduced cell viability over a 24-h exposure period. Cell density was reduced over 48 h following direct contact on both CC and RS surfaces, but was further reduced on the CC surface. The direct presence of cells accelerated corrosion for both materials. The corroded RS material exhibited superior mechanical properties relative to the CC material. The data show that the improved corrosion resistance of the rapidly solidified EW62 alloy (RS) resulted in a relatively reduced cytotoxic effect on tumorous cells. Hence, the tested alloy in the form of a rapidly solidified substance may introduce a good balance between its biodegradation characteristics and cytotoxic effect towards cancerous and normal cells.