Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eli J. Mlawer is active.

Publication


Featured researches published by Eli J. Mlawer.


Journal of Geophysical Research | 1997

Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave

Eli J. Mlawer; Steven J. Taubman; Patrick D. Brown; Michael J. Iacono; Shepard A. Clough

A rapid and accurate radiative transfer model (RRTM) for climate applications has been developed and the results extensively evaluated. The current version of RRTM calculates fluxes and cooling rates for the longwave spectral region (10–3000 cm−1) for an arbitrary clear atmosphere. The molecular species treated in the model are water vapor, carbon dioxide, ozone, methane, nitrous oxide, and the common halocarbons. The radiative transfer in RRTM is performed using the correlated-k method: the k distributions are attained directly from the LBLRTM line-by-line model, which connects the absorption coefficients used by RRTM to high-resolution radiance validations done with observations. Refined methods have been developed for treating bands containing gases with overlapping absorption, for the determination of values of the Planck function appropriate for use in the correlated-k approach, and for the inclusion of minor absorbing species in a band. The flux and cooling rate results of RRTM are linked to measurement through the use of LBLRTM, which has been substantially validated with observations. Validations of RRTM using LBLRTM have been performed for the midlatitude summer, tropical, midlatitude winter, subarctic winter, and four atmospheres from the Spectral Radiance Experiment campaign. On the basis of these validations the longwave accuracy of RRTM for any atmosphere is as follows: 0.6 W m−2 (relative to LBLRTM) for net flux in each band at all altitudes, with a total (10–3000 cm−1) error of less than 1.0 W m−2 at any altitude; 0.07 K d−1 for total cooling rate error in the troposphere and lower stratosphere, and 0.75 K d−1 in the upper stratosphere and above. Other comparisons have been performed on RRTM using LBLRTM to gauge its sensitivity to changes in the abundance of specific species, including the halocarbons and carbon dioxide. The radiative forcing due to doubling the concentration of carbon dioxide is attained with an accuracy of 0.24 W m−2, an error of less than 5%. The speed of execution of RRTM compares favorably with that of other rapid radiation models, indicating that the model is suitable for use in general circulation models.


Journal of Geophysical Research | 2008

Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models

Michael J. Iacono; Jennifer Delamere; Eli J. Mlawer; Mark W. Shephard; Shepard A. Clough; William D. Collins

A primary component of the observed, recent climate change is the radiative forcing from increased concentrations of long-lived greenhouse gases (LLGHGs). Effective simulation of anthropogenic climate change by general circulation models (GCMs) is strongly dependent on the accurate representation of radiative processes associated with water vapor, ozone and LLGHGs. In the context of the increasing application of the Atmospheric and Environmental Research, Inc. (AER) radiation models within the GCM community, their capability to calculate longwave and shortwave radiative forcing for clear sky scenarios previously examined by the radiative transfer model intercomparison project (RTMIP) is presented. Forcing calculations with the AER line-by-line (LBL) models are very consistent with the RTMIP line-by-line results in the longwave and shortwave. The AER broadband models, in all but one case, calculate longwave forcings within a range of -0.20 to 0.23 W m{sup -2} of LBL calculations and shortwave forcings within a range of -0.16 to 0.38 W m{sup -2} of LBL results. These models also perform well at the surface, which RTMIP identified as a level at which GCM radiation models have particular difficulty reproducing LBL fluxes. Heating profile perturbations calculated by the broadband models generally reproduce high-resolution calculations within a few hundredths K d{sup -1} in the troposphere and within 0.15 K d{sup -1} in the peak stratospheric heating near 1 hPa. In most cases, the AER broadband models provide radiative forcing results that are in closer agreement with high 20 resolution calculations than the GCM radiation codes examined by RTMIP, which supports the application of the AER models to climate change research.


Journal of Geophysical Research | 2000

Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3

Michael J. Iacono; Eli J. Mlawer; Shepard A. Clough; Jean-Jacques Morcrette

The effect of introducing a new longwave radiation parameterization, RRTM, on the energy budget and thermodynamic properties of the National Center for Atmospheric Research (NCAR) community climate model (CCM3) is described. RRTM is a rapid and accurate, correlated k, radiative transfer model that has been developed for the Atmospheric Radiation Measurement (ARM) program to address the ARM objective of improving radiation models in GCMs. Among the important features of RRTM are its connection to radiation measurements through comparison to the extensively validated line-by-line radiative transfer model (LBLRTM) and its use of an improved and validated water vapor continuum model. Comparisons between RRTM and the CCM3 longwave (LW) parameterization have been performed for single atmospheric profiles using the CCM3 column radiation model and for two 5-year simulations using the full CCM3 climate model. RRTM produces a significant enhancement of LW absorption largely due to its more physical and spectrally extensive water vapor continuum model relative to the current CCM3 water continuum treatment. This reduces the clear sky, outgoing longwave radiation over the tropics by 6–9 W m−2. Downward LW surface fluxes are increased by 8–15 W m−2 at high latitudes and other dry regions. These changes considerably improve known flux biases in CCM3 and other GCMs. At low and midlatitudes, RRTM enhances LW radiative cooling in the upper troposphere by 0.2–0.4 K d−1 and reduces cooling in the lower troposphere by 0.2–0.5 K d−1. The enhancement of downward surface flux contributes to increasing lower tropospheric and surface temperatures by 1–4 K, especially at high latitudes, which partly compensates documented, CCM3 cold temperature biases in these regions. Experiments were performed with the weather prediction model of the European Center for Medium Range Weather Forecasts (ECMWF), which show that RRTM also impacts temperature on timescales relevant to forecasting applications. RRTM is competitive with the CCM3 LW model in computational expense at 30 layers and with the ECMWF LW model at 60 layers, and it would be relatively faster at higher vertical resolution.


Philosophical Transactions of the Royal Society A | 2012

Development and recent evaluation of the MT_CKD model of continuum absorption

Eli J. Mlawer; Vivienne H. Payne; Jean-Luc Moncet; Jennifer Delamere; Matthew J. Alvarado; David C. Tobin

Water vapour continuum absorption is an important contributor to the Earths radiative cooling and energy balance. Here, we describe the development and status of the MT_CKD (MlawerTobinCloughKneizysDavies) water vapour continuum absorption model. The perspective adopted in developing the MT_CKD model has been to constrain the model so that it is consistent with quality analyses of spectral atmospheric and laboratory measurements of the foreign and self continuum. For field measurements, only cases for which the characterization of the atmospheric state has been highly scrutinized have been used. Continuum coefficients in spectral regions that have not been subject to compelling analyses are determined by a mathematical formulation of the spectral shape associated with each water vapour monomer line. This formulation, which is based on continuum values in spectral regions in which the coefficients are well constrained by measurements, is applied consistently to all water vapour monomer lines from the microwave to the visible. The results are summed-up (separately for the foreign and self) to obtain continuum coefficients from 0 to 20 000 cm−1. For each water vapour line, the MT_CKD line shape formulation consists of two components: exponentially decaying far wings of the line plus a contribution from a water vapour molecule undergoing a weak interaction with a second molecule. In the MT_CKD model, the first component is the primary agent for the continuum between water vapour bands, while the second component is responsible for the majority of the continuum within water vapour bands. The MT_CKD model should be regarded as a semi-empirical model with strong constraints provided by the known physics. Keeping the MT_CKD continuum consistent with current observational studies necessitates periodic updates to the water vapour continuum coefficients. In addition to providing details on the MT_CKD line shape formulation, we describe the most recent update to the model, MT_CKD_2.5, which is based on an analysis of satellite- and ground-based observations from 2385 to 2600 cm−1 (approx. 4 μm).


Journal of the Atmospheric Sciences | 2004

The QME AERI LBLRTM: A Closure Experiment for Downwelling High Spectral Resolution Infrared Radiance

David D. Turner; D. C. Tobin; Shepard A. Clough; Patrick D. Brown; Robert G. Ellingson; Eli J. Mlawer; Robert O. Knuteson; Henry E. Revercomb; Timothy R. Shippert; William L. Smith; Mark W. Shephard

Abstract Research funded by the U.S. Department of Energys Atmospheric Radiation Measurement (ARM) program has led to significant improvements in longwave radiative transfer modeling over the last decade. These improvements, which have generally come in small incremental changes, were made primarily in the water vapor self- and foreign-broadened continuum and the water vapor absorption line parameters. These changes, when taken as a whole, result in up to a 6 W m−2 improvement in the modeled clear-sky downwelling longwave radiative flux at the surface and significantly better agreement with spectral observations. This paper provides an overview of the history of ARM with regard to clear-sky longwave radiative transfer, and analyzes remaining related uncertainties in the ARM state-of-the-art Line-by-Line Radiative Transfer Model (LBLRTM). A quality measurement experiment (QME) for the downwelling infrared radiance at the ARM Southern Great Plains site has been ongoing since 1994. This experiment has three...


Journal of Geophysical Research | 2001

Atmospheric longwave irradiance uncertainty: Pyrgeometers compared to an absolute sky‐scanning radiometer, atmospheric emitted radiance interferometer, and radiative transfer model calculations

Rolf Philipona; Ellsworth G. Dutton; Tom Stoffel; Joe Michalsky; Ibrahim Reda; Armin Stifter; Peter Wendung; Norm Wood; Shepard A. Clough; Eli J. Mlawer; Gail P. Anderson; Henry E. Revercomb; Timothy R. Shippert

Because atmospheric longwave radiation is one of the most fundamental elements of an expected climate change, there has been a strong interest in improving measurements and model calculations in recent years. Important questions are how reliable and consistent are atmospheric longwave radiation measurements and calculations and what are the uncertainties? The First International Pyrgeometer and Absolute Sky-scanning Radiometer Comparison, which was held at the Atmospheric Radiation Measurement programs Southern Great Plains site in Oklahoma, answers these questions at least for midlatitude summer conditions and reflects the state of the art for atmospheric longwave radiation measurements and calculations. The 15 participating pyrgeometers were all calibration-traced standard instruments chosen from a broad international community. Two new chopped pyrgeometers also took part in the comparison. An absolute sky-scanning radiometer (ASR), which includes a pyroelectric detector and a reference blackbody source, was used for the first time as a reference standard instrument to field calibrate pyrgeometers during clear-sky nighttime measurements. Owner-provided and uniformly determined blackbody calibration factors were compared. Remarkable improvements and higher pyrgeometer precision were achieved with field calibration factors. Results of nighttime and daytime pyrgeometer precision and absolute uncertainty are presented for eight consecutive days of measurements, during which period downward longwave irradiance varied between 260 and 420 W m−2. Comparisons between pyrgeometers and the absolute ASR, the atmospheric emitted radiance interferometer, and radiative transfer models LBLRTM and MODTRAN show a surprisingly good agreement of <2 W m−2 for nighttime atmospheric longwave irradiance measurements and calculations.


Journal of Geophysical Research | 2012

The Continual Intercomparison of Radiation Codes: Results from Phase I

Lazaros Oreopoulos; Eli J. Mlawer; Jennifer Delamere; Timothy R. Shippert; Jason N. S. Cole; Boris Fomin; Michael J. Iacono; Zhonghai Jin; Jiangning Li; James Manners; P. Räisänen; Fred G. Rose; Yuanchong Zhang; Michael J. Wilson; William B. Rossow

[1] We present results from Phase I of the Continual Intercomparison of Radiation Codes (CIRC), intended as an evolving and regularly updated reference source for evaluation of radiative transfer (RT) codes used in global climate models and other atmospheric applications. CIRC differs from previous intercomparisons in that it relies on an observationally validated catalog of cases. The seven CIRC Phase I baseline cases, five cloud free and two with overcast liquid clouds, are built around observations by the Atmospheric Radiation Measurements program that satisfy the goals of Phase I, namely, to examine RT model performance in realistic, yet not overly complex, atmospheric conditions. Besides the seven baseline cases, additional idealized “subcases” are also employed to facilitate interpretation of model errors. In addition to quantifying individual model performance with respect to reference line-by-line calculations, we also highlight RT code behavior for conditions of doubled CO2, issues arising from spectral specification of surface albedo, and the impact of cloud scattering in the thermal infrared. Our analysis suggests that improvements in the calculation of diffuse shortwave flux, shortwave absorption, and shortwave CO2 forcing as well as in the treatment of spectral surface albedo should be considered for many RT codes. On the other hand, longwave calculations are generally in agreement with the reference results. By expanding the range of conditions under which participating codes are tested, future CIRC phases will hopefully allow even more rigorous examination of RT codes.


Geophysical Research Letters | 2000

Comparison of spectral direct and diffuse solar irradiance measurements and calculations for cloud-free conditions

Eli J. Mlawer; Patrick D. Brown; Shepard A. Clough; Lee Harrison; Joseph Michalsky; Piotr W. Kiedron; Tim Shippert

Ground-based spectral measurements of direct and diffuse solar irradiance from the Rotating Shadowband Spectroradiometer, taken in cloud-free conditions in Oklahoma in the fall of 1997, are compared over the spectral range 10000–28500 cm−1 to corresponding calculations by an accurate multiple-scattering radiative transfer model. For each case analyzed, the aerosol optical depths used in the calculation were determined by fitting an Angstrom relation based on the ratio of the direct-beam measurements to a direct-beam calculation with no aerosols present. Also used in the calculation was a spectrally-independent aerosol single-scattering albedo chosen to provide agreement with the diffuse measurements. The spectral agreement between the measurements and calculations for the direct and diffuse irradiances is very good, providing strong evidence that in this spectral range there are no unmodeled molecular absorbers of significance to the atmospheric energy balance. Especially notable is the correspondence between the observations and calculations for a case characterized by a large amount of water vapor in the direct-beam path, directly contradicting the suggestion that water vapor absorbs more shortwave radiation than is represented in radiative transfer models.


Journal of Geophysical Research | 2011

Evaluation of radiation scheme performance within chemistry climate models

Piers M. Forster; V. I. Fomichev; E. Rozanov; C. Cagnazzo; A. I. Jonsson; Ulrike Langematz; Boris Fomin; Michael J. Iacono; Bernhard Mayer; Eli J. Mlawer; Gunnar Myhre; Robert W. Portmann; Hideharu Akiyoshi; Victoria Falaleeva; Nathan P. Gillett; Alexey Yu. Karpechko; Jiangnan Li; Perrine Lemennais; Olaf Morgenstern; Sophie Oberländer; Michael Sigmond; Kiyotaka Shibata

[1] This paper evaluates global mean radiatively important properties of chemistry climate models (CCMs). We evaluate stratospheric temperatures and their 1980–2000 trends, January clear sky irradiances, heating rates, and greenhouse gas radiative forcings from an offline comparison of CCM radiation codes with line‐by‐line models, and CCMs’ representation of the solar cycle. CCM global mean temperatures and their change can give an indication of errors in radiative transfer codes and/or atmospheric composition. Biases in the global temperature climatology are generally small, although five out of 18 CCMs show biases in their climatology that likely indicate problems with their radiative transfer codes. Temperature trends also generally agree well with observations, although one model shows significant discrepancies that appear to be due to radiation errors. Heating rates and estimated temperature changes from CO2, ozone, and water vapor changes are generally well modeled. Other gases (N2O, CH4, and CFCs) have only played a minor role in stratospheric temperature change, but their heating rates have large fractional errors in many models. Models that do not account for variations in the spectrum of solar irradiance cannot properly simulate solar‐induced variations in stratospheric temperature. The combined long‐lived greenhouse gas global annual mean instantaneous net radiative forcing at the tropopause is within 30% of line‐by‐line models for all CCM radiation codes tested. Problems remain in simulating radiative forcing for stratospheric water vapor and ozone changes with errors between 3% and 200% compared to line by line models. The paper makes recommendations for CCM radiation code developers and future intercomparisons.


IEEE Transactions on Geoscience and Remote Sensing | 2006

Forward model and Jacobians for Tropospheric Emission Spectrometer retrievals

Shepard A. Clough; Mark W. Shephard; John M. Worden; Patrick D. Brown; Helen M. Worden; M. Luo; C. D. Rodgers; C. P. Rinsland; Aaron Goldman; Linda R. Brown; S. S. Kulawik; Annmarie Eldering; Michael Lampel; Gregory Ben Osterman; Reinhard Beer; Kevin W. Bowman; Karen E. Cady-Pereira; Eli J. Mlawer

The Tropospheric Emission Spectrometer (TES) is a high-resolution spaceborne sensor that is capable of observing tropospheric species. In order to exploit fully TESs potential for tropospheric constituent retrievals, an accurate and fast operational forward model was developed for TES. The forward model is an important component of the TES retrieval model, the Earth Limb and Nadir Operational Retrieval (ELANOR), as it governs the accuracy and speed of the calculations for the retrievals. In order to achieve the necessary accuracy and computational efficiency, TES adopted the strategy of utilizing precalculated absorption coefficients generated by the line-by-line calculations provided by line-by-line radiation transfer modeling. The decision to perform the radiative transfer with the highest monochromatic accuracy attainable, rather than with an accelerated scheme that has the potential to add algorithmic forward model error, has proven to be very successful for TES retrievals. A detailed description of the TES forward model and Jacobians is described. A preliminary TES observation is provided as an example to demonstrate that the TES forward model calculations represent TES observations. Also presented is a validation example, which is part of the extensive forward model validation effort.

Collaboration


Dive into the Eli J. Mlawer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David D. Turner

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Vivienne H. Payne

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Lazaros Oreopoulos

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Patrick D. Brown

Computer Sciences Corporation

View shared research outputs
Top Co-Authors

Avatar

Timothy R. Shippert

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

William D. Collins

University Corporation for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Jiangnan Li

University of Victoria

View shared research outputs
Researchain Logo
Decentralizing Knowledge